Do you want to publish a course? Click here

Film structure of epitaxial graphene oxide on SiC: Insight on the relationship between interlayer spacing, water content, and intralayer structure

271   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemical oxidation of multilayer graphene grown on silicon carbide yields films exhibiting reproducible characteristics, lateral uniformity, smoothness over large areas, and manageable chemical complexity, thereby opening opportunities to accelerate both fundamental understanding and technological applications of this form of graphene oxide films. Here, we investigate the vertical inter-layer structure of these ultra-thin oxide films. X-ray diffraction, atomic force microscopy, and IR experiments show that the multilayer films exhibit excellent inter-layer registry, little amount (<10%) of intercalated water, and unexpectedly large interlayer separations of about 9.35 {AA}. Density functional theory calculations show that the apparent contradiction of little water but large interlayer spacing in the graphene oxide films can be explained by considering a multilayer film formed by carbon layers presenting, at the nanoscale, a non-homogenous oxidation, where non-oxidized and highly oxidized nano-domains coexist and where a few water molecules trapped between oxidized regions of the stacked layers are sufficient to account for the observed large inter-layer separations. This work sheds light on both the vertical and intra-layer structure of graphene oxide films grown on silicon carbide, and more in general, it provides novel insight on the relationship between inter-layer spacing, water content, and structure of graphene/graphite oxide materials.



rate research

Read More

293 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are discussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
Tellurium (Te) films with monolayer and few-layer thickness are obtained by molecular beam epitaxy on a graphene/6H-SiC(0001) substrate and investigated by in situ scanning tunneling microscopy and spectroscopy (STM/STS). We reveal that the Te films are composed of parallel-arranged helical Te chains flat-lying on the graphene surface, exposing the (1x1) facet of (10-10) of the bulk crystal. The band gap of Te films increases monotonically with decreasing thickness, reaching ~0.92 eV for the monolayer Te. An explicit band bending at the edge between the monolayer Te and graphene substrate is visualized. With the thickness controlled in atomic scale, Te films show potential applications of in electronics and optoelectronics.
We present a structural analysis of the graphene-4HSiC(0001) interface using surface x-ray reflectivity. We find that the interface is composed of an extended reconstruction of two SiC bilayers. The interface directly below the first graphene sheet is an extended layer that is more than twice the thickness of a bulk SiC bilayer (~1.7A compared to 0.63A). The distance from this interface layer to the first graphene sheet is much smaller than the graphite interlayer spacing but larger than the same distance measured for graphene grown on the (000-1) surface, as predicted previously by ab intio calculations.
Recent transport measurements on thin graphite films grown on SiC show large coherence lengths and anomalous integer quantum Hall effects expected for isolated graphene sheets. This is the case eventhough the layer-substrate epitaxy of these films implies a strong interface bond that should induce perturbations in the graphene electronic structure. Our DFT calculations confirm this strong substrate-graphite bond in the first adsorbed carbon layer that prevents any graphitic electronic properties for this layer. However, the graphitic nature of the film is recovered by the second and third absorbed layers. This effect is seen in both the (0001)and $(000bar{1})$ 4H SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. It causes the graphene to be doped and gives rise to a gap opening at the Dirac point after 3 carbon layers are deposited in agreement with recent ARPES experiments (T.Ohta et al, Science {bf 313} (2006) 951).
171 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا