Do you want to publish a course? Click here

Cosmic backgrounds due to the formation of the first generation of supermassive black holes

116   0   0.0 ( 0 )
 Added by Biman Nath
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The statistics of black holes and their masses strongly suggests that their mass distribution has a cutoff towards lower masses near $3 times 10^{6}$ M$_{odot}$. This is consistent with a classical formation mechanism from the agglomeration of the first massive stars in the universe. However, when the masses of the stars approach $10^{6}$ M$_{odot}$, the stars become unstable and collapse, possibly forming the first generation of cosmological black holes. Here we speculate that the claimed detection of an isotropic radio background may constitute evidence of the formation of these first supermassive black holes, since their data are compatible in spectrum and intensity with synchrotron emission from the remnants. The model proposed fulfills all observational conditions for the background, in terms of single-source strength, number of sources, far-infrared and gamma-ray emission. The observed high energy neutrino flux is consistent with our calculations in flux and spectrum. The proposal described in this paper may also explain the early formation and growth of massive bulge-less disk galaxies as derived from the massive, gaseous shell formed during the explosion prior to the formation of a supermassive black hole.



rate research

Read More

One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift range, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
120 - J. Grindlay , J. Bloom , P. Coppi 2010
The epochs of origin of the first stars and galaxies, and subsequent growth of the first supermassive black holes, are among the most fundamental questions. Observations of the highest redshift Gamma-Ray Bursts (GRBs) will be the most compelling in situ probe of the history of initial star formation and consequent epoch of reionization if their prompt and precise detection can be followed immediately by sensitive near-IR imaging and spectroscopy. Blazars are the persistent analogs of GRBs and for the same reason (beaming) can be observed at highest redshifts where they might best trace the high accretion rate-driven jets and growth of supermassive black holes in galaxies. The proposed EXIST mission can uniquely probe these questions, and many others, given its unparalled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide a brief summary of the mission design, key science objectives, mission plan and readiness for EXIST, as proposed to Astro2010.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback. The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
We constrain the total accreted mass density in supermassive black holes at z>6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Msec observations of the Chandra Deep Field South, we achieve the most restrictive constraints on total black hole growth in the early Universe. We estimate an accreted mass density <1000Mo Mpc^-3 at z~6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive - as yet undetected - host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured and/or is due to black hole mergers as opposed to accretion or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high redshift seed formation models.
The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as well as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا