Do you want to publish a course? Click here

High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7

135   0   0.0 ( 0 )
 Added by Alistair Cameron
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on small angle neutron scattering measurements of the vortex lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum field of 11~T up to 16.7~T with the field applied parallel to the c axis. This is the first microscopic study of vortex matter in this region of the superconducting phase. We find the high field VL displays a rhombic structure, with a field-dependent coordination that passes through a square configuration, and which does not lock-in to a field-independent structure. The VL pinning reduces with increasing temperature, but is seen to affect the VL correlation length even above the irreversibility temperature of the lattice structure. At high field and temperature we observe a melting transition, which appears to be first order, with no detectable signal from a vortex liquid above the transition.



rate research

Read More

The vortex lattice (VL) in the high-kappa superconductor YBa2Cu3O7, at 2 K and with the magnetic field parallel to the crystal c-axis, undergoes a sequence of transitions between different structures as a function of applied magnetic field. However, from structural studies alone, it is not possible to determine precisely the system anisotropy that governs the transitions between different structures. To address this question, here we report new small-angle neutron scattering measurements of both the VL structure at higher temperatures, and the field- and temperature-dependence of the VL form factor. Our measurements demonstrate how the influence of anisotropy on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important with increasing magnetic field, and suppressed by increasing the temperature towards Tc. The data indicate that nonlocality due to different anisotropies play important roles in determining the VL properties.
We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL structure phase is stabilized at intermediate fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy.
76 - B. Maiorov , G. Nieva , 1999
We present an exhaustive analysis of transport measurements performed in twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid transition is first order when the magnetic field H is applied at an angle theta away from the direction of the twin planes. We show that the resistive transitions are hysteretic and the V-I curves are non-linear, displaying a characteristic s-shape at the melting line Hm(T), which scales as epsilon(theta)Hm(T,theta). These features are gradually lost when the critical point H*(theta) is approached. Above H*(theta) the V-I characteristics show a linear response in the experimentally accessible V-I window, and the transition becomes reversible. Finally we show that the first order phase transition takes place between a highly correlated vortex liquid in the field direction and a solid state of unknown symmetry. As a consequence, the available data support the scenario for a vortex-line melting rather than a vortex sublimation as recently suggested [T.Sasagawa et al. PRL 80, 4297 (1998)].
107 - T. Maniv , V. Zhuravlev 2014
It is shown that the Dirac fermion structures created in the middle of the Landau bands in the vortex-lattice state of a pure 2D strongly type-II superconductor at half-integer filling factors can be effectively controlled by the external magnetic field. The resulting field-induced modulation of the magneto-oscillations is shown to arise from Fermi-surface resonance scattering in the vortex core regions. Possible observation of the predicted effect in a quasi 2D organic superconductor is discussed.
Measurements of the $^{17}$O nuclear magnetic resonance (NMR) quadrupolar spectrum of apical oxygen in HgBa$_{2}$CuO$_{4+delta}$ were performed over a range of magnetic fields from 6.4 to 30,T in the superconducting state. Oxygen isotope exchanged single crystals were investigated with doping corresponding to superconducting transition temperatures from 74,K underdoped, to 78,K overdoped. The apical oxygen site was chosen since its NMR spectrum has narrow quadrupolar satellites that are well separated from any other resonance. Non-vortex contributions to the spectra can be deconvolved in the time domain to determine the local magnetic field distribution from the vortices. Numerical analysis using Brandts Ginzburg-Landau theory was used to find structural parameters of the vortex lattice, penetration depth, and coherence length as a function of magnetic field in the vortex solid phase. From this analysis we report a vortex structural transition near 15,T from an oblique lattice with an opening angle of $73^{circ}$ at low magnetic fields to a triangular lattice with $60^{circ}$ stabilized at high field. The temperature for onset of vortex dynamics has been identified with vortex lattice melting. This is independent of the magnetic field at sufficiently high magnetic field similar to that reported for YBa$_2$Cu$_3$O$_7$ and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ and is correlated with mass anisotropy of the material. This behavior is accounted for theoretically only in the limit of very high anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا