We use the dynamical mean-field approximation to study singularities in the self-energy and a two-particle irreducible vertex induced by the metal-insulator transition of the disordered Falicov-Kimball model. We set general conditions for the existence of a critical metal-insulator transition caused by a divergence of the imaginary part of the self-energy. We calculate explicitly the critical behavior of the self-energy for the symmetric and asymmetric disorder distributions. We demonstrate that the metal-insulator transition is preceded by a pole in a two-particle irreducible vertex. We show that unlike the singularity in the self-energy the divergence in the irreducible vertex does not lead to non-analyticities in measurable physical quantities. We reveal universal features of the critical metal-insulator transition that are transferable also to the Mott-Hubbard transition in the models of the local Fermi liquid.
Mean-field theory of non-interacting disordered electron systems is widely and successfully used to describe equilibrium properties of alloys in the whole range of disorder strengths. It, however, fails to take into account effects of quantum coherence and localizing back-scattering effects when applied to transport phenomena. We present an approximate scheme extending the mean-field theory for one-electron properties in that it offers a formula for the two-particle vertex and the electrical conductivity non-perturbatively including the leading-order vertex corrections in a way that the approximation remains consistent and the conductivity non-negative in all disorder regimes.
We present experimental data and a theoretical interpretation on the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b approximately 2-10 nm. A large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L_phi < b in the range of sheet resistances considered, so that the effective dimension is d = 3. The observed approximate fractional temperature power law of the conductivity is ascribed to the scaling regime near the transition. The conductivity data as a function of temperature and disorder strength collapse on to two scaling curves for the metallic and insulating regimes. The best fit is obtained for a dynamical exponent z approximately 2.5 and a correlation length critical exponent u approximately 1.4 on the metallic side and a localization length exponent u approximately 0.8 on the insulating side.
We report a simulation of the metal-insulator transition in a model of a doped semiconductor that treats disorder and interactions on an equal footing. The model is analyzed using density functional theory. From a multi-fractal analysis of the Kohn-Sham eigenfunctions, we find $ u approx 1.3$ for the critical exponent of the correlation length. This differs from that of Andersons model of localization and suggests that the Coulomb interaction changes the universality class of the transition.
We study energy transport in XXZ spin chains driven to nonequilibrium configurations by thermal reservoirs of different temperatures at the boundaries. We discuss the transition between diffusive and subdiffusive transport regimes in sectors of zero and finite magnetization at high temperature. At large anisotropies we find that diffusive energy transport prevails over a large range of disorder strengths, which is in contrast to spin transport that is subdiffusive in the same regime for weak disorder strengths. However, when finite magnetization is induced, both energy and spin currents decay as a function of system size with the same exponent. Based on this, we conclude that diffusion of energy is much more pervasive than that of magnetization in these disordered spin-1/2 systems, and occurs across a significant range of the interaction-disorder parameter phase-space; we suggest this is due to conservation laws present in the clean XXZ limit.
Electron tunneling experiments are used to probe Coulomb correlation effects in the single-particle density-of-states (DOS) of boron-doped silicon crystals near the critical density of the metal-insulator transition (MIT). At low energies, a DOS measurement distinguishes between insulating and metallic samples with densities 10 to 15 % on either side of the MIT. However, at higher energies the DOS of both insulators and metals show a common behavior, increasing roughly as the square-root of energy. The observed characteristics of the DOS can be understood using a classical treatment of Coulomb interactions combined with a phenomenological scaling ansatz to describe the length-scale dependence of the dielectric constant as the MIT is approached from the insulating side.
V. Janis
,V. Pokorny
.
(2014)
.
"Critical metal-insulator transition and divergence in a two-particle irreducible vertex in disordered and interacting electron systems"
.
Vaclav Janis
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا