A continuum of excitations in interacting one-dimensional systems is bounded from below by a spectral edge that marks the lowest possible excitation energy for a given momentum. We analyse short-range interactions between Fermi particles and between Bose particles (with and without spin) using Bethe-Ansatz techniques and find that the dispersions of the corresponding spectral edge modes are close to a parabola in all cases. Based on this emergent phenomenon we propose an empirical model of a free, non-relativistic particle with an effective mass identified at low energies as the bare electron mass renormalised by the dimensionless Luttinger parameter $K$ (or $K_sigma$ for particles with spin). The relevance of the Luttinger parameters beyond the low energy limit provides a more robust method for extracting them experimentally using a much wide range of data from the bottom of the one-dimensional band to the Fermi energy. The empirical model of the spectral edge mode complements the mobile impurity model to give a description of the excitations in proximity of the edge at arbitrary momenta in terms of only the low energy parameters and the bare electron mass. Within such a framework, for example, exponents of the spectral function are expressed explicitly in terms of only a few Luttinger parameters.