No Arabic abstract
Recently, incomplete-market techniques have been used to develop a model applicable to credit default swaps (CDSs) with results obtained that are quite different from those obtained using the market-standard model. This article makes use of the new incomplete-market model to further study CDS hedging and extends the model so that it is capable treating single-name CDS portfolios. Also, a hedge called the vanilla hedge is described, and with it, analytic results are obtained explaining the striking features of the plot of no-arbitrage bounds versus CDS maturity for illiquid CDSs. The valuation process that follows from the incomplete-market model is an integrated modelling and risk management procedure, that first uses the model to find the arbitrage-free range of fair prices, and then requires risk management professionals for both the buyer and the seller to find, as a basis for negotiation, prices that both respect the range of fair prices determined by the model, and also benefit their firms. Finally, in a section on numerical results, the striking behavior of the no-arbitrage bounds as a function of CDS maturity is illustrated, and several examples describe the reduction in risk by the hedging of single-name CDS portfolios.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
The 2008 financial crisis has been attributed to excessive complexity of the financial system due to financial innovation. We employ computational complexity theory to make this notion precise. Specifically, we consider the problem of clearing a financial network after a shock. Prior work has shown that when banks can only enter into simple debt contracts with each other, then this problem can be solved in polynomial time. In contrast, if they can also enter into credit default swaps (CDSs), i.e., financial derivative contracts that depend on the default of another bank, a solution may not even exist. In this work, we show that deciding if a solution exists is NP-complete if CDSs are allowed. This remains true if we relax the problem to $varepsilon$-approximate solutions, for a constant $varepsilon$. We further show that, under sufficient conditions where a solution is guaranteed to exist, the approximate search problem is PPAD-complete for constant $varepsilon$. We then try to isolate the origin of the complexity. It turns out that already determining which banks default is hard. Further, we show that the complexity is not driven by the dependence of counterparties on each other, but rather hinges on the presence of so-called naked CDSs. If naked CDSs are not present, we receive a simple polynomial-time algorithm. Our results are of practical importance for regulators stress tests and regulatory policy.
Crowded trades by similarly trading peers influence the dynamics of asset prices, possibly creating systemic risk. We propose a market clustering measure using granular trading data. For each stock the clustering measure captures the degree of trading overlap among any two investors in that stock. We investigate the effect of crowded trades on stock price stability and show that market clustering has a causal effect on the properties of the tails of the stock return distribution, particularly the positive tail, even after controlling for commonly considered risk drivers. Reduced investor pool diversity could thus negatively affect stock price stability.
We detect the backbone of the weighted bipartite network of the Japanese credit market relationships. The backbone is detected by adapting a general method used in the investigation of weighted networks. With this approach we detect a backbone that is statistically validated against a null hypothesis of uniform diversification of loans for banks and firms. Our investigation is done year by year and it covers more than thirty years during the period from 1980 to 2011. We relate some of our findings with economic events that have characterized the Japanese credit market during the last years. The study of the time evolution of the backbone allows us to detect changes occurred in network size, fraction of credit explained, and attributes characterizing the banks and the firms present in the backbone.
Renowned method of log-periodic power law(LPPL) is one of the few ways that a financial market crash could be predicted. Alongside with LPPL, this paper propose a novel method of stock market crash using white box model derived from simple assumptions about the state of rational bubble. By applying this model to Dow Jones Index and Bitcoin market price data, it is shown that the model successfully predicts some major crashes of both markets, implying the high sensitivity and generalization abilities of the model.