Galactic Chemical Evolution and solar s-process abundances: dependence on the 13C-pocket structure


Abstract in English

We study the s-process abundances (A > 90) at the epoch of the solar-system formation. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic Chemical Evolution (GCE) model: (i) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s-distribution of isotopes with A > 130; (ii) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C-pocket, which may affect the efficiency of the 13C(a, n)16O reaction, the major neutron source of the s-process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the effects of the variation of the mass of the pocket. We find that GCE s-predictions at the epoch of the solar-system formation marginally depend on the size and shape of the 13C-pocket once a different weighted range of 13C-pocket strengths is assumed. We ascertain that, independently of the internal structure of the 13C-pocket, the missing solar-system s-process contribution in the range from A = 90 to 130 remains essentially the same.

Download