Do you want to publish a course? Click here

Resonant state expansion applied to three-dimensional open optical systems

157   0   0.0 ( 0 )
 Added by Mark Doost Mr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is developed for three-dimensional open optical systems. Results are presented using the analytically solvable homogeneous dielectric sphere as unperturbed system. Since any perturbation which breaks the spherical symmetry mixes transverse electric (TE) and transverse magnetic (TM) modes, the RSE is extended here to include TM modes and a zero-frequency pole of the Greens function. We demonstrate the validity of the RSE for TM modes by verifying its convergence towards the exact result for a homogeneous perturbation of the sphere. We then apply the RSE to calculate the modes for a selection of perturbations sequentially reducing the remaining symmetry, given by a change of the dielectric constant of half-sphere and quarter-sphere shape. Since no exact solutions are known for these perturbations, we verify the RSE results by comparing them with the results of state of the art finite element method (FEM) and finite difference in time domain (FDTD) solvers. We find that for the selected perturbations, the RSE provides a significantly higher accuracy than the FEM and FDTD for a given computational effort, demonstrating its potential to supersede presently used methods. We furthermore show that in contrast to presently used methods, the RSE is able to determine the perturbation of a selected group of modes by using a limited basis local to these modes, which can further reduce the computational effort by orders of magnitude.



rate research

Read More

124 - M.B. Doost , W. Langbein , 2011
The resonant state expansion (RSE), a novel perturbation theory of Brillouin-Wigner type developed in electrodynamics [Muljarov, Langbein, and Zimmermann, Europhys. Lett., 92, 50010(2010)], is applied to planar, effectively one-dimensional optical systems, such as layered dielectric slabs and Bragg reflector microcavities. It is demonstrated that the RSE converges with a power law in the basis size. Algorithms for error estimation and their reduction by extrapolation are presented and evaluated. Complex eigenfrequencies, electro-magnetic fields, and the Greens function of a selection of optical systems are calculated, as well as the observable transmission spectra. In particular we find that for a Bragg-mirror microcavity, which has sharp resonances in the spectrum, the transmission calculated using the resonant state expansion reproduces the result of the transfer/scattering matrix method.
We present two alternative complete sets of static modes of a homogeneous dielectric sphere, for their use in the resonant-state expansion (RSE), a rigorous perturbative method in electrodynamics. Physically, these modes are needed to correctly describe the static electric field of a charge redistribution within the optical system due to a perturbation of the permittivity. We demonstrate the convergence of the RSE towards the exact result for a perturbation describing a size reduction of the basis sphere. We then revisit the quarter-sphere perturbation treated in [Doost {it et al.}, Phys. Rev. A {bf 90}, 013834 (2014)], where only a single static mode per each angular momentum was introduced, and show that using a complete set of static modes leads to a small, though non-negligible correction of the RSE result, improving the agreement with finite-element simulations. As another example of applying the RSE with a complete set of static modes, we calculate the resonant states of a dielectric cylinder, also comparing the result with a finite-element simulation.
A rigorous method of calculating the electromagnetic field, the scattering matrix, and scattering cross-sections of an arbitrary finite three-dimensional optical system described by its permittivity distribution is presented. The method is based on the expansion of the Greens function into the resonant states of the system. These can be calculated by any means, including the popular finite element and finite-difference time-domain methods. However, using the resonant-state expansion with a spherically-symmetric analytical basis, such as that of a homogeneous sphere, allows to determine a complete set of the resonant states of the system within a given frequency range. Furthermore, it enables to take full advantage of the expansion of the field outside the system into vector spherical harmonics, resulting in simple analytic expressions. We verify and illustrate the developed approach on an example of a dielectric sphere in vacuum, which has an exact analytic solution known as Mie scattering.
The resonant state expansion, a rigorous perturbation theory, recently developed in electrodynamics, is applied to non-relativistic quantum mechanical systems in one dimension. The method is used here for finding the resonant states in various potentials approximated by combinations of Dirac delta functions. The resonant state expansion is first verified for a triple quantum well system, showing convergence to the available analytic solution as the number of resonant states in the basis increases. The method is then applied to multiple quantum well and barrier structures, including finite periodic systems. Results are compared with the eigenstates in triple quantum wells and infinite periodic potentials, revealing the nature of the resonant states in the studied systems.
179 - E. A. Muljarov , T. Weiss 2018
The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا