Do you want to publish a course? Click here

Metal-line absorption around $zapprox$2.4 star-forming galaxies in the Keck Baryonic Structure Survey

107   0   0.0 ( 0 )
 Added by Monica L. Turner
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We study metal absorption around 854 $zapprox$2.4 star-forming galaxies taken from the Keck Baryonic Structure Survey (KBSS). The galaxies examined in this work lie in the fields of 15 hyper-luminous background QSOs, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centred 2-D maps of the median absorption by OVI, NV, CIV, CIII, and SIV, as well as updated results for HI. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and $pm$240 km/s along the line-of-sight (LOS, ~1 pMpc in the case of pure Hubble flow) for all ions except NV. For CIV (and HI) we detect a significant enhancement of the absorption signal out to 2 pMpc in the transverse direction, corresponding to the maximum impact parameter in our sample. After normalising the median absorption profiles to account for variations in line strengths and detection limits, in the transverse direction we find no evidence for a sharp drop-off in metals distinct from that of HI. We argue instead that non-detection of some metal line species in the extended circumgalactic medium is consistent with differences in the detection sensitivity. We also present measurements of covering fractions and equivalent widths as a function of projected galaxy distance. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction. This rules out redshift errors as the source of the observed redshift-space anisotropy and thus implies that we have detected the signature of gas peculiar velocities from infall, outflows, or virial motions for HI, OVI, CIV, CIII, and CIV.

rate research

Read More

141 - Monica L. Turner 2014
We use quasar absorption lines to study the physical conditions in the circumgalactic medium of redshift $zapprox 2.3$ star-forming galaxies taken from the Keck Baryonic Structure Survey (KBSS). In Turner et al. 2014 we used the pixel optical depth technique to show that absorption by HI and the metal ions OVI, NV, CIV, CIII and SiIV is strongly enhanced within $|Delta v|lesssim170$ km/s and projected distances $|d|lesssim180$ proper kpc from sightlines to the background quasars. Here we demonstrate that the OVI absorption is also strongly enhanced at fixed HI, CIV, and SiIV optical depths, and that this enhancement extends out to $sim350$ km/s. At fixed HI the increase in the median OVI optical depth near galaxies is 0.3-0.7 dex and is detected at 2--3-$sigma$ confidence for all seven HI bins that have $log_{10}tau_{rm HI}ge-1.5$. We use ionization models to show that the observed strength of OVI as a function of HI is consistent with enriched, photoionized gas for pixels with $tau_{rm HI}gtrsim10$. However, for pixels with $tau_{rm HI} lesssim 1$ this would lead to implausibly high metallicities at low densities if the gas were photoionized by the background radiation. This indicates that the galaxies are surrounded by gas that is sufficiently hot to be collisionally ionized ($T > 10^5,$K) and that a substantial fraction of the hot gas has a metallicity $gtrsim 10^{-1}$ of solar. Given the high metallicity and large velocity extent (out to $sim1.5times v_{rm circ}$) of this gas, we conclude that we have detected hot, metal enriched outflows arising from star-forming galaxies.
The addition of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) has led to a dramatic increase in our ability to study the z>6 Universe. The increase in the near-infrared (NIR) sensitivity of WFC3 over previous instruments has enabled us to reach apparent magnitudes approaching 29 (AB). This allows us to probe the rest-frame ultraviolet (UV) continuum, redshifted into the NIR at $z>6$. Taking advantage of the large optical depths at this redshift, resulting in the Lyman-alpha break, we use a combination of WFC3 imaging and pre-existing Advanced Camera for Surveys (ACS) imaging to search for z approx 7 over 4 fields. Our analysis reveals 29 new z approx 7 star forming galaxy candidates in addition to 16 pre-existing candidates already discovered in these fields. The improved statistics from our doubling of the robust sample of z-drop candidates confirms the previously observed evolution of the bright end of the luminosity function.
134 - Zheng Zheng 2010
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emission. We present predictions of this extended, low surface brightness Lya emission based on radiative transfer modeling in a cosmological reionization simulation. The extended emission can be detected from stacked narrowband images of Lya emitters (LAEs) or of Lyman break galaxies (LBGs). Its average surface brightness profile has a central cusp, then flattens to an approximate plateau beginning at an inner characteristic scale below ~0.2 Mpc (comoving), then steepens again beyond an outer characteristic scale of ~1 Mpc. The inner scale marks the transition from scattered light of the central source to emission from clustered sources, while the outer scale marks the spatial extent of scattered emission from these clustered sources. Both scales tend to increase with halo mass, UV luminosity, and observed Lya luminosity. The extended emission predicted by our simulation is already within reach of deep narrowband photometry using large ground-based telescopes. Such observations would test radiative transfer models of emission from LAEs and LBGs, and they would open a new window on the circumgalactic environment of high-redshift star-forming galaxies.
We study the environments of 6 radio galaxies at 2.2 < z < 2.6 using wide-field near-infrared images. We use colour cuts to identify galaxies in this redshift range, and find that three of the radio galaxies are surrounded by significant surface overdensities of such galaxies. The excess galaxies that comprise these overdensities are strongly clustered, suggesting they are physically associated. The colour distribution of the galaxies responsible for the overdensity are consistent with those of galaxies that lie within a narrow redshift range at z ~ 2.4. Thus the excess galaxies are consistent with being companions of the radio galaxies. The overdensities have estimated masses in excess of 10^14 solar masses, and are dense enough to collapse into virizalised structures by the present day: these structures may evolve into groups or clusters of galaxies. A flux-limited sample of protocluster galaxies with K < 20.6 mag is derived by statistically subtracting the fore- and background galaxies. The colour distribution of the protocluster galaxies is bimodal, consisting of a dominant blue sequence, comprising 77 +/- 10% of the galaxies, and a poorly populated red sequence. The blue protocluster galaxies have similar colours to local star-forming irregular galaxies (U -V ~ 0.6), suggesting most protocluster galaxies are still forming stars at the observed epoch. The blue colours and lack of a dominant protocluster red sequence implies that these cluster galaxies form the bulk of their stars at z < 3.
We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun yr^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 pm 0.54 Gyr for normal galaxies and 0.06 pm 0.04 Gyr for starburst galaxies. We calculate an average molecular gas fraction of 7-20% at the intermediate redshifts probed by the EGNoG survey. By expressing the molecular gas fraction in terms of the specific star formation rate and molecular gas depletion time (using typical values), we also calculate the expected evolution of the molecular gas fraction with redshift. The predicted behavior agrees well with the significant evolution observed from z~2.5 to today.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا