We present a strong lensing system in which a double source is imaged 5 times by 2 early-type galaxies. We take advantage in this target of the multi-band photometry obtained as part of the CLASH program, complemented by the spectroscopic data of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift of 3.7 for the source and confirm spectroscopically the membership of the 2 lenses to the galaxy cluster MACS J1206.2-0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the 2 lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersions of (97 +/- 3) and (240 +/- 6) km/s. The total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, that is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of about (1.0 +/- 0.5) x 10^{9} M_{Sun}. By combining the total and luminous mass estimates of the 2 lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 +/- 0.21 and 0.80 +/- 0.32. With these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are about 2 and 3 times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales reveals the potential of studies of this kind for investigating the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.