Do you want to publish a course? Click here

CLASH: Extending galaxy strong lensing to small physical scales with distant sources highly-magnified by galaxy cluster members

254   0   0.0 ( 0 )
 Added by Claudio Grillo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a strong lensing system in which a double source is imaged 5 times by 2 early-type galaxies. We take advantage in this target of the multi-band photometry obtained as part of the CLASH program, complemented by the spectroscopic data of the VLT/VIMOS and FORS2 follow-up campaign. We use a photometric redshift of 3.7 for the source and confirm spectroscopically the membership of the 2 lenses to the galaxy cluster MACS J1206.2-0847 at redshift 0.44. We exploit the excellent angular resolution of the HST/ACS images to model the 2 lenses in terms of singular isothermal sphere profiles and derive robust effective velocity dispersions of (97 +/- 3) and (240 +/- 6) km/s. The total mass distribution of the cluster is also well characterized by using only the local information contained in this lensing system, that is located at a projected distance of more than 300 kpc from the cluster luminosity center. According to our best-fitting lensing and composite stellar population models, the source is magnified by a total factor of 50 and has a luminous mass of about (1.0 +/- 0.5) x 10^{9} M_{Sun}. By combining the total and luminous mass estimates of the 2 lenses, we measure luminous over total mass fractions projected within the effective radii of 0.51 +/- 0.21 and 0.80 +/- 0.32. With these lenses we can extend the analysis of the mass properties of lens early-type galaxies by factors that are about 2 and 3 times smaller than previously done with regard to, respectively, velocity dispersion and luminous mass. The comparison of the total and luminous quantities of our lenses with those of astrophysical objects with different physical scales reveals the potential of studies of this kind for investigating the internal structure of galaxies. These studies, made possible thanks to the CLASH survey, will allow us to go beyond the current limits posed by the available lens samples in the field.



rate research

Read More

We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 ($z=0.348$) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range $1.0-6.1$, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of $0.3$ in a fixed flat $Lambda$CDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at $68%$ confidence level) $Omega_m=0.25^{+0.13}_{-0.16}$ and $w=-1.07^{+0.16}_{-0.42}$ for a flat $Lambda$CDM model, and $Omega_m=0.31^{+0.12}_{-0.13}$ and $Omega_Lambda=0.38^{+0.38}_{-0.27}$ for a universe with $w=-1$ and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be $0.3pm 0.1$.(ABRIDGED)
178 - Patrick L. Kelly 2014
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z=0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The clusters gravitational potential also creates multiple images of the z=1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.
102 - Keiichi Umetsu 2020
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of topics relevant to its cosmological and astrophysical applications. We begin by reviewing the theoretical foundations of gravitational lensing from first principles, with special attention to the basics and advanced techniques of weak gravitational lensing. We summarize and discuss key findings from recent cluster--galaxy weak-lensing studies on both observational and theoretical grounds, with a focus on cluster mass profiles, the concentration--mass relation, the splashback radius, and implications from extensive mass calibration efforts for cluster cosmology.
124 - A. Monna , S. Seitz , I. Balestra 2016
We present a detailed strong lensing (SL) mass reconstruction of the core of the galaxy cluster MACSJ 2129.4-0741 ($rm z_{cl}=0.589$) obtained by combining high-resolution HST photometry from the CLASH survey with new spectroscopic observations from the CLASH-VLT survey. A background bright red passive galaxy at $rm z_{sp}=1.36$, sextuply lensed in the cluster core, has four radial lensed images located over the three central cluster members. Further 19 background lensed galaxies are spectroscopically confirmed by our VLT survey, including 3 additional multiple systems. A total of 31 multiple images are used in the lensing analysis. This allows us to trace with high precision the total mass profile of the cluster in its very inner region ($rm R<100$ kpc). Our final lensing mass model reproduces the multiple images systems identified in the cluster core with high accuracy of $0.4$. This translates to an high precision mass reconstruction of MACS 2129, which is constrained at level of 2%. The cluster has Einstein parameter $Theta_E=(29pm4)$, and a projected total mass of $rm M_{tot}(<Theta_E)=(1.35pm0.03)times 10^{14}M_{odot}$ within such radius. Together with the cluster mass profile, we provide here also the complete spectroscopic dataset for the cluster members and lensed images measured with VLT/VIMOS within the CLASH-VLT survey.
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of $c_{200c}=4.01^{+0.35}_{-0.32}$ at $M_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{odot}$. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is $alpha_E=0.191^{+0.071}_{-0.068}$, which is consistent with the NFW-equivalent Einasto parameter of $sim 0.18$. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا