Do you want to publish a course? Click here

Parameter Estimation of Gravitational Waves from Precessing BH-NS Inspirals with higher harmonics

114   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English
 Authors E. Ochsner




Ask ChatGPT about the research

Precessing black hole-neutron star (BH-NS) binaries produce a rich gravitational wave signal, encoding the binarys nature and inspiral kinematics. Using the lalinference_mcmc Markov-chain Monte Carlo parameter estimation code, we use two fiducial examples to illustrate how the geometry and kinematics are encoded into the modulated gravitational wave signal, using coordinates well-adapted to precession. Even for precessing binaries, we show the performance of detailed parameter estimation can be estimated by effective estimates: comparisons of a prototype signal with its nearest neighbors, adopting a fixed sky location and idealized two-detector network. We use detailed and effective approaches to show higher harmonics provide nonzero but small local improvement when estimating the parameters of precessing BH-NS binaries. That said, we show higher harmonics can improve parameter estimation accuracy for precessing binaries ruling out approximately-degenerate source orientations. Our work illustrates quantities gravitational wave measurements can provide, such as reliable component masses and the precise orientation of a precessing short gamma ray burst progenitor relative to the line of sight. Effective estimates may provide a simple way to estimate trends in the performance of parameter estimation for generic precessing BH-NS binaries in next-generation detectors. For example, our results suggest that the orbital chirp rate, precession rate, and precession geometry are roughly-independent observables, defining natural variables to organize correlations in the high-dimensional BH-NS binary parameter space.



rate research

Read More

141 - R. OShaughnessy 2013
Using the texttt{lalinference} Markov-chain Monte Carlo parameter estimation code, we examine two distinct nonprecessing black hole-neutron star (BH-NS) binaries with and without higher-order harmonics. Our simulations suggest that higher harmonics provide a minimal amount of additional information, principally about source geometry. Higher harmonics do provide disproportionately more information than expected from the signal power. Our results compare favorably to the effective Fisher matrix approach. Extrapolating using analytic scalings, we expect higher harmonics will provide little new information about nonprecessing BH-NS binaries at the signal amplitudes expected for the first few detections. Any study of subdominant degrees of freedom in gravitational wave astronomy can adopt the tools presented here ($V/V_{rm prior}$ and $D_{KL}$) to assess whether new physics is accessible (e.g., modifications of gravity; spin-orbit misalignment) and if so precisely what information those new parameters provide. For astrophysicists, we provide a concrete illustration of how well parameters of a BH-NS binary can be measured, relevant to the astrophysical interpretation of coincident EM and GW events (e.g., short GRBs). For our fiducial initial-detector example, the individual masses can be determined to lie between $7.11-11.48 M_odot$ and $1.77-1.276M_odot$ at greater than 99% confidence, accounting for unknown BH spin. Assuming comparable control over waveform systematics, future measurements of BH-NS binaries can constrain the BH and perhaps NS mass distributions.
Ground-based gravitational wave detectors are sensitive to a narrow range of frequencies, effectively taking a snapshot of merging compact-object binary dynamics just before merger. We demonstrate that by adopting analysis parameters that naturally characterize this picture, the physical parameters of the system can be extracted more efficiently from the gravitational wave data, and interpreted more easily. We assess the performance of MCMC parameter estimation in this physically intuitive coordinate system, defined by (a) a frame anchored on the binarys spins and orbital angular momentum and (b) a time at which the detectors are most sensitive to the binarys gravitational wave emission. Using anticipated noise curves for the advanced-generation LIGO and Virgo gravitational wave detectors, we find that this careful choice of reference frame and reference time significantly improves parameter estimation efficiency for BNS, NS-BH, and BBH signals.
We describe the current status of the search for gravitational waves from inspiralling compact binary systems in LIGO data. We review the result from the first scientific run of LIGO (S1). We present the goals of the search of data taken in the second scientific run (S2) and describe the differences between the methods used in S1 and S2.
During the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO), signals modelling the gravitational waves emitted by coalescing non-spinning compact-object binaries were injected into the LIGO data stream. We analysed the data segments into which such injections were made using a Bayesian approach, implemented as a Markov-chain Monte-Carlo technique in our code SPINspiral. This technique enables us to determine the physical parameters of such a binary inspiral, including masses and spin, following a possible detection trigger. For the first time, we publish the results of a realistic parameter-estimation analysis of waveforms embedded in real detector noise. We used both spinning and non-spinning waveform templates for the data analysis and demonstrate that the intrinsic source parameters can be estimated with an accuracy of better than 1-3% in the chirp mass and 0.02-0.05 (8-20%) in the symmetric mass ratio if non-spinning waveforms are used. We also find a bias between the injected and recovered parameters, and attribute it to the difference in the post-Newtonian orders of the waveforms used for injection and analysis.
Inferring astrophysical information from gravitational waves emitted by compact binaries is one of the key science goals of gravitational-wave astronomy. In order to reach the full scientific potential of gravitational-wave experiments we require techniques to mitigate the cost of Bayesian inference, especially as gravitational-wave signal models and analyses become increasingly sophisticated and detailed. Reduced order models (ROMs) of gravitational waveforms can significantly reduce the computational cost of inference by removing redundant computations. In this paper we construct the first reduced order models of gravitational-wave signals that include the effects of spin-precession, inspiral, merger, and ringdown in compact object binaries, and which are valid for component masses describing binary neutron star, binary black hole and mixed binary systems. This work utilizes the waveform model known as IMRPhenomPv2. Our ROM enables the use of a fast reduced order quadrature (ROQ) integration rule which allows us to approximate Bayesian probability density functions at a greatly reduced computational cost. We find that the ROQ rule can be used to speed up inference by factors as high as 300 without introducing systematic bias. This corresponds to a reduction in computational time from around half a year to a half a day, for the longest duration/lowest mass signals. The ROM and ROQ rule are available with the main inference library of the LIGO Scientific Collaboration, LALInference.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا