We study the neutral exciton energy spectrum fine structure and its spin dephasing in transition metal dichalcogenides such as MoS$_2$. The interaction of the mechanical exciton with its macroscopic longitudinal electric field is taken into account. The splitting between the longitudinal and transverse excitons is calculated by means of the both electrodynamical approach and $mathbf k cdot mathbf p$ perturbation theory. This long-range exciton exchange interaction can induce valley polarization decay. The estimated exciton spin dephasing time is in the picosecond range, in agreement with available experimental data.
We theoretically study the interaction of an ultrafast intense linearly polarized optical pulse with monolayers of transition metal dichalcogenides (TMDCs). Such a strong pulse redistributes electrons between the bands and generates femtosecond currents during the pulse. Due to the large bandwidth of the incident pulse, this process is completely off-resonant. While in TMDCs the time-reversal symmetry is conserved, the inversion symmetry is broken and these monolayers have the axial symmetry along armchair direction but not along the zigzag one. Therefore, the pulse polarized along the asymmetric direction of TMDC monolayer generates both longitudinal, i.e., along the direction of polarization, and transverse, i.e., in the perpendicular direction, currents. Such currents result in charge transfer through the system. We study different TMDC materials and show how the femtosecond transport in TMDC monolayers depend on their parameters, such as lattice constant and bandgap.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction, specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.
The exceptionally strong Coulomb interaction in semiconducting transition-metal dichalcogenides (TMDs) gives rise to a rich exciton landscape consisting of bright and dark exciton states. At elevated densities, excitons can interact through exciton-exciton annihilation (EEA), an Auger-like recombination process limiting the efficiency of optoelectronic applications. Although EEA is a well-known and particularly important process in atomically thin semiconductors determining exciton lifetimes and affecting transport at elevated densities, its microscopic origin has remained elusive. In this joint theory-experiment study combining microscopic and material-specific theory with time- and temperature-resolved photoluminescence measurements, we demonstrate the key role of dark intervalley states that are found to dominate the EEA rate in monolayer WSe$_2$. We reveal an intriguing, characteristic temperature dependence of Auger scattering in this class of materials with an excellent agreement between theory and experiment. Our study provides microscopic insights into the efficiency of technologically relevant Auger scattering channels within the remarkable exciton landscape of atomically thin semiconductors.
Due to the Coulomb interaction exciton eignestates in monolayer transitional metal dichalcogenides are coherent superposition of two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the center of mass momentum, whereas the one which couples to the transverse magnetic mode has both parabolic and linear components. In this work we present an experimental proposal to observe the signatures of linear component of the dispersion. In particular, it is demonstrated that by pumping the system with linearly polarized light the exciton transport is anisotropic compared to circularly polarized pump. We show that the results persist for moderate level of disorder present in realistic systems. Finally, we demonstrate that similar effects can be obtained for positively detuned exciton-polaritons, in less stringent experimental requirements compared to bare exciton case.
The linear absorption spectra in monolayers of transition metal dichalcogenides show pronounced signatures of the exceptionally strong exciton-phonon interaction in these materials. To account for both exciton and phonon physics in such optical signals, we compare different theoretical methods to calculate the absorption spectra using the example of $mathrm{MoSe_2}$. In this paper, we derive the equations of motion for the polarization either using a correlation expansion up to 4th Born approximation or a time convolutionless master equation. We show that the Born approximation might become problematic when not treated in high enough order, especially at high temperatures. In contrast, the time convolutionless formulation gives surprisingly good results despite its simplicity when compared to higher-order corrrelation expansion and therefore provides a powerful tool to calculate the lineshape of linear absorption spectra in the very popular monolayer materials.
M.M. Glazov
,T. Amand
,X. Marie
.
(2014)
.
"Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides"
.
M. M. Glazov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا