Quantum transport measurements including the Altshuler-Aronov-Spivak (AAS) and Aharonov-Bohm (AB) effects, universal conductance fluctuations (UCF), and weak anti-localization (WAL) have been carried out on epitaxial Bi thin films ($10-70$ bilayers) on Si(111). The results show that while the film interior is insulating all six surfaces of the Bi thin films are robustly metallic. We propose that these properties are the manifestation of a novel phenomenon, namely, a topologically trivial bulk system can become topologically non-trivial when it is made into a thin film. We stress that whats observed here is entirely different from the predicted 2D topological insulating state in a single bilayer Bi where only the four side surfaces should possess topologically protected gapless states.