Do you want to publish a course? Click here

Prospect Theory for Online Financial Trading

129   0   0.0 ( 0 )
 Added by Yang-Yu Liu
 Publication date 2014
  fields Financial
and research's language is English




Ask ChatGPT about the research

Prospect theory is widely viewed as the best available descriptive model of how people evaluate risk in experimental settings. According to prospect theory, people are risk-averse with respect to gains and risk-seeking with respect to losses, a phenomenon called loss aversion. Despite of the fact that prospect theory has been well developed in behavioral economics at the theoretical level, there exist very few large-scale empirical studies and most of them have been undertaken with micro-panel data. Here we analyze over 28.5 million trades made by 81.3 thousand traders of an online financial trading community over 28 months, aiming to explore the large-scale empirical aspect of prospect theory. By analyzing and comparing the behavior of winning and losing trades and traders, we find clear evidence of the loss aversion phenomenon, an essence in prospect theory. This work hence demonstrates an unprecedented large-scale empirical evidence of prospect theory, which has immediate implication in financial trading, e.g., developing new trading strategies by minimizing the effect of loss aversion. Moreover, we introduce three risk-adjusted metrics inspired by prospect theory to differentiate winning and losing traders based on their historical trading behavior. This offers us potential opportunities to augment online social trading, where traders are allowed to watch and follow the trading activities of others, by predicting potential winners statistically based on their historical trading behavior rather than their trading performance at any given point in time.



rate research

Read More

463 - F. Ren , B. Zheng , 2009
A dynamic herding model with interactions of trading volumes is introduced. At time $t$, an agent trades with a probability, which depends on the ratio of the total trading volume at time $t-1$ to its own trading volume at its last trade. The price return is determined by the volume imbalance and number of trades. The model successfully reproduces the power-law distributions of the trading volume, number of trades and price return, and their relations. Moreover, the generated time series are long-range correlated. We demonstrate that the results are rather robust, and do not depend on the particular form of the trading probability.
143 - Lin Li 2021
Financial trading aims to build profitable strategies to make wise investment decisions in the financial market. It has attracted interests in the machine learning community for a long time. This paper proposes to trade financial assets automatically using feature preprocessing skills and Recurrent Reinforcement Learning (RRL) algorithm. The strategy starts from technical indicators extracted from assets market information. Then these technical indicators are preprocessed by Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT) and eventually inputted to the RRL algorithm to do the trading. The extensive empirical evidence shows that the proposed strategy is not only effective and robust in its performance, but also can mitigate the drawbacks underlying the initial trading using RRL.
Online trading has attracted millions of people around the world. In March 2021, it was reported there were 18 million accounts from just one broker. Historically, manipulation in financial markets is considered to be fraudulently influencing share, currency pairs or any other indices prices. This article introduces the idea that online trading platform technical issues can be considered as brokers manipulation to control traders profit and loss. More importantly it shows these technical issues are the contributing factors of the 82% risk of retail traders losing money. We identify trading platform technical issues of one of the worlds leading online trading providers and calculate retail traders losses caused by these issues. To do this, we independently record each trade details using the REST API response provided by the broker. We show traders log activity files is the only way to assess any suspected profit or loss manipulation by the broker. Therefore, it is essential for any retail trader to have access to their log files. We compare our findings with brokers Trustpilot customer reviews. We illustrate how traders profit and loss can be negatively affected by brokers platform technical issues such as not being able to close profitable trades, closing trades with delays, disappearance of trades, disappearance of profit from clients statements, profit and loss discrepancies, stop loss not being triggered, stop loss or limit order triggered too early. Although regulatory bodies try to ensure that consumers get a fair deal, these attempts are hugely insufficient in protecting retail traders. Therefore, regulatory bodies such as the FCA should take these technical issues seriously and not rely on brokers internal investigations, because under any other circumstances, these platform manipulations would be considered as crimes and connivingly misappropriating funds.
We study the daily trading volume volatility of 17,197 stocks in the U.S. stock markets during the period 1989--2008 and analyze the time return intervals $tau$ between volume volatilities above a given threshold q. For different thresholds q, the probability density function P_q(tau) scales with mean interval <tau> as P_q(tau)=<tau>^{-1}f(tau/<tau>) and the tails of the scaling function can be well approximated by a power-law f(x)~x^{-gamma}. We also study the relation between the form of the distribution function P_q(tau) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of P_q(tau) associated with these factors, suggesting a multi-scaling feature in the volume return intervals. We analyze the conditional probability P_q(tau|tau_0) for $tau$ following a certain interval tau_0, and find that P_q(tau|tau_0) depends on tau_0 such that immediately following a short/long return interval a second short/long return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.
In this paper we examine inefficiencies and information disparity in the Japanese stock market. By carefully analysing information publicly available on the internet, an `outsider to conventional statistical arbitrage strategies--which are based on market microstructure, company releases, or analyst reports--can nevertheless pursue a profitable trading strategy. A large volume of blog data is used to demonstrate the existence of an inefficiency in the market. An information-based model that replicates the trading strategy is developed to estimate the degree of information disparity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا