Do you want to publish a course? Click here

Finite difference approximations for a size-structured population model with distributed states in the recruitment

126   0   0.0 ( 0 )
 Added by Jozsef Farkas
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we consider a size-structured population model where individuals may be recruited into the population at different sizes. First and second order finite difference schemes are developed to approximate the solution of the mathematical model. The convergence of the approximations to a unique weak solution with bounded total variation is proved. We then show that as the distribution of the new recruits become concentrated at the smallest size, the weak solution of the distributed states-at-birth model converges to the weak solution of the classical Gurtin-McCamy-type size-structured model in the weak$^*$ topology. Numerical simulations are provided to demonstrate the achievement of the desired accuracy of the two methods for smooth solutions as well as the superior performance of the second-order method in resolving solution-discontinuities. Finally we provide an example where supercritical Hopf-bifurcation occurs in the limiting single state-at-birth model and we apply the second-order numerical scheme to show that such bifurcation occurs in the distributed model as well.



rate research

Read More

The aim of this work is twofold. First, we survey the techniques developed in (Perthame, Zubelli, 2007) and (Doumic, Perthame, Zubelli, 2008) to reconstruct the division (birth) rate from the cell volume distribution data in certain structured population models. Secondly, we implement such techniques on experimental cell volume distributions available in the literature so as to validate the theoretical and numerical results. As a proof of concept, we use the data reported in the classical work of Kubitschek [3] concerning Escherichia coli in vitro experiments measured by means of a Coulter transducer-multichannel analyzer system (Coulter Electronics, Inc., Hialeah, Fla, USA.) Despite the rather old measurement technology, the reconstructed division rates still display potentially useful biological features.
We consider a size-structured model for cell division and address the question of determining the division (birth) rate from the measured stable size distribution of the population. We propose a new regularization technique based on a filtering approach. We prove convergence of the algorithm and validate the theoretical results by implementing numerical simulations, based on classical techniques. We compare the results for direct and inverse problems, for the filtering method and for the quasi-reversibility method proposed in [Perthame-Zubelli].
The blood flow model maintains the steady state solutions, in which the flux gradients are non-zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted non-oscillatory (WENO) schemes to this model with such well-balanced property and at the same time keeping genuine high order accuracy. Rigorous theoretical analysis as well as extensive numerical results all indicate that the resulting schemes verify high order accuracy, maintain the well-balanced property, and keep good resolution for smooth and discontinuous solutions.
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with the continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.
In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا