Structural, magnetic and superconducting properties of pulsed-laser-deposition-grown $rm{La_{1.85}Sr_{0.15}CuO_{4}/La_{2/3}Ca_{1/3}MnO_{3}}$ superlattices on $rm{(001)}$-oriented $rm{LaSrAlO_{4}}$ substrates


Abstract in English

Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO and LCMO these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of about 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H || ab and a sizeable paramagnetic shift for H || c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of about 190 K and a large low-temperature saturation moment of about 3.5(1) muB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant mechanisms.

Download