Fast multidimensional convolution in low-rank formats via cross approximation


Abstract in English

We propose a new cross-conv algorithm for approximate computation of convolution in different low-rank tensor formats (tensor train, Tucker, Hierarchical Tucker). It has better complexity with respect to the tensor rank than previous approaches. The new algorithm has a high potential impact in different applications. The key idea is based on applying cross approximation in the frequency domain, where convolution becomes a simple elementwise product. We illustrate efficiency of our algorithm by computing the three-dimensional Newton potential and by presenting preliminary results for solution of the Hartree-Fock equation on tensor-product grids.

Download