No Arabic abstract
We propose a new cross-conv algorithm for approximate computation of convolution in different low-rank tensor formats (tensor train, Tucker, Hierarchical Tucker). It has better complexity with respect to the tensor rank than previous approaches. The new algorithm has a high potential impact in different applications. The key idea is based on applying cross approximation in the frequency domain, where convolution becomes a simple elementwise product. We illustrate efficiency of our algorithm by computing the three-dimensional Newton potential and by presenting preliminary results for solution of the Hartree-Fock equation on tensor-product grids.
We describe a simple, black-box compression format for tensors with a multiscale structure. By representing the tensor as a sum of compressed tensors defined on increasingly coarse grids, we capture low-rank structures on each grid-scale, and we show how this leads to an increase in compression for a fixed accuracy. We devise an alternating algorithm to represent a given tensor in the multiresolution format and prove local convergence guarantees. In two dimensions, we provide examples that show that this approach can beat the Eckart-Young theorem, and for dimensions higher than two, we achieve higher compression than the tensor-train format on six real-world datasets. We also provide results on the closedness and stability of the tensor format and discuss how to perform common linear algebra operations on the level of the compressed tensors.
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor completions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of computing time and memory, in general. Based on a dynamical low-rank approximation of the solution, a new splitting integrator is proposed for a quite general class of stiff matrix differential equations. This class comprises differential Lyapunov and differential Riccati equations that arise from spatial discretizations of partial differential equations. The proposed integrator handles stiffness in an efficient way, and it preserves the symmetry and positive semidefiniteness of solutions of differential Lyapunov equations. Numerical examples that illustrate the benefits of this new method are given. In particular, numerical results for the efficient simulation of the weather phenomenon El Ni~no are presented.
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image processing and recognition problems, only a small number of dominant SVD triplets are selected, while in some applications such as quaternion total least squares problem, small SVD triplets (small singular values and associated singular vectors) and numerical rank with respect to a small threshold are required. In this paper, we propose a randomized quaternion SVD (verbrandsvdQ) method to compute a small number of SVD triplets of a large-scale quaternion matrix. Theoretical results are given about approximation errors and the corresponding algorithm adapts to the low-rank matrix approximation problem. When the restricted rank increases, it might lead to information loss of small SVD triplets. The blocked quaternion randomized SVD algorithm is then developed when the numerical rank and information about small singular values are required. For color face recognition problems, numerical results show good performance of the developed quaternion randomized SVD method for low-rank approximation of a large-scale quaternion matrix. The blocked randomized SVD algorithm is also shown to be more robust than unblocked method through several experiments, and approximation errors from the blocked scheme are very close to the optimal error obtained by truncating a full SVD.
Quaternion matrices are employed successfully in many color image processing applications. In particular, a pure quaternion matrix can be used to represent red, green and blue channels of color images. A low-rank approximation for a pure quaternion matrix can be obtained by using the quaternion singular value decomposition. However, this approximation is not optimal in the sense that the resulting low-rank approximation matrix may not be pure quaternion, i.e., the low-rank matrix contains real component which is not useful for the representation of a color image. The main contribution of this paper is to find an optimal rank-$r$ pure quaternion matrix approximation for a pure quaternion matrix (a color image). Our idea is to use a projection on a low-rank quaternion matrix manifold and a projection on a quaternion matrix with zero real component, and develop an alternating projections algorithm to find such optimal low-rank pure quaternion matrix approximation. The convergence of the projection algorithm can be established by showing that the low-rank quaternion matrix manifold and the zero real component quaternion matrix manifold has a non-trivial intersection point. Numerical examples on synthetic pure quaternion matrices and color images are presented to illustrate the projection algorithm can find optimal low-rank pure quaternion approximation for pure quaternion matrices or color images.