Do you want to publish a course? Click here

High-precision Distribution of Highly-stable Optical Pulse Trains with Sub-10-fs Timing Jitter

487   0   0.0 ( 0 )
 Added by Jiutao Wu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-precision optical pulse trains distribution via fibre links has made huge impacts in many fields. In most published works, the accuracies are still fundamentally limited by some unavoidable noises, such as thermal and shot noise from conventional photodiodes, thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system by using highly-precision phase detector to overcome the limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors to realize optical-electrical conversion and phase measurements, for suppressing the noises and achieving ultra-high accuracy. A 10-km fibre link distribution experiment shows our system provides a residual instability at the level of 4.6*10-15@1-s and 6.1*10-18@10000-s, with an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 KHz. This low instability and timing jitter makes it possible that our system can be used in the optical clock distribution or the applications for the facilities which require extremely accuracy frequency time synchronization.



rate research

Read More

We demonstrate sub-100-attosecond timing jitter optical pulse trains generated from free-running, 77.6-MHz repetition-rate, mode-locked Er-fiber lasers. At -0.002(pm0.001) ps2 net cavity dispersion, the rms timing jitter is 70 as (224 as) integrated from 10 kHz (1 kHz) to 38.8 MHz offset frequency, when measured by a 24-as-resolution balanced optical cross-correlator. To our knowledge, this result corresponds to the lowest rms timing jitter measured from any mode-locked fiber lasers so far. The measured result also agrees fairly well with the Namiki-Haus analytic model of quantum-limited timing jitter in stretched-pulse fiber lasers.
We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).
We present an optical-electronic approach to generating microwave signals with high spectral purity. By circumventing shot noise and operating near fundamental thermal limits, we demonstrate 10 GHz signals with an absolute timing jitter for a single hybrid oscillator of 420 attoseconds (1Hz - 5 GHz).
We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber length to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.
We present a frequency domain model of shot noise in the photodetection of ultrashort optical pulse trains using a time-varying analysis. Shot noise-limited photocurrent power spectral densities, signal-to-noise expressions, and shot noise spectral correlations are derived that explicitly include the finite response of the photodetector. It is shown that the strength of the spectral correlations in the shot noise depends on the optical pulse width, and that these correlations can create orders-of-magnitude imbalance between the shot noise-limited amplitude and phase noise of photonically generated microwave carriers. It is also shown that only by accounting for spectral correlations can shot noise be equated with the fundamental quantum limit in the detection of optical pulse-to-pulse timing jitter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا