Do you want to publish a course? Click here

${}^{3}mathrm{He}$ and $pd$ Scattering to Next-to-Leading Order in Pionless Effective Field Theory

130   0   0.0 ( 0 )
 Added by Jared Vanasse
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We study the three-body systems of ${}^{3}mathrm{He}$ and $pd$ scattering and demonstrate, both analytically and numerically, that a new $pd$ three-body force is needed at next-to-leading order in pionless effective field theory. We also show that at leading order these observables require no new three-body force beyond what is necessary to describe $nd$ scattering. We include electromagnetic effects by iterating only diagrams that involve a single photon exchange in the three-body sector.



rate research

Read More

We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing.
We employ an effective field theory (EFT) that exploits the separation of scales in the p-wave halo nucleus $^8mathrm{B}$ to describe the process $^7mathrm{Be}(p,gamma)^8mathrm{B}$ up to a center-of-mass energy of 500 keV. The calculation, for which we develop the lagrangian and power counting, is carried out up to next-to-leading order (NLO) in the EFT expansion. The power counting we adopt implies that Coulomb interactions must be included to all orders in $alpha_{rm em}$. We do this via EFT Feynman diagrams computed in time-ordered perturbation theory, and so recover existing quantum-mechanical technology such as the two-potential formalism for the treatment of the Coulomb-nuclear interference. Meanwhile the strong interactions and the E1 operator are dealt with via EFT expansions in powers of momenta, with a breakdown scale set by the size of the ${}^7$Be core, $Lambda approx 70$ MeV. Up to NLO the relevant physics in the different channels that enter the radiative capture reaction is encoded in ten different EFT couplings. The result is a model-independent parametrization for the reaction amplitude in the energy regime of interest. To show the connection to previous results we fix the EFT couplings using results from a number of potential model and microscopic calculations in the literature. Each of these models corresponds to a particular point in the space of EFTs. The EFT structure therefore provides a very general way to quantify the model uncertainty in calculations of $^7mathrm{Be}(p,gamma)^8mathrm{B}$. We also demonstrate that the only N$^2$LO corrections in $^7mathrm{Be}(p,gamma)^8mathrm{B}$ come from an inelasticity that is practically of N$^3$LO size in the energy range of interest, and so the truncation error in our calculation is effectively N$^3$LO. We also discuss the relation of our extrapolated $S(0)$ to the previous standard evaluation.
We study the scattering of a pseudoscalar meson off one ground state octet baryon in covariant baryon chiral perturbation theory (BChPT) up to the next-to-next-to-leading order. The inherent power counting breaking terms are removed within extended-on-mass-shell scheme. We perform the first combined study of the pion-nucleon and kaon-nucleon scattering data in covariant BChPT and show that it can provide a reasonable description of the experimental data. In addition, we find that it is possible to fit the experimental baryon masses and the pion-nucleon and kaon-nucleon scattering data simultaneously at this order, thus providing a consistent check on covariant BChPT. We compare the scattering lengths of all the pertinent channels with available experimental data and those of other approaches. In addition, we have studied the leading order contributions of the virtual decuplet and found that they can improve the description of the $pi N$ phase shifts near the $Delta(1232)$ peak, while they have negligible effects on the description of the $K N$ phase shifts.
Determination of the proper power-counting scheme is an important issue for the systematic application of Chiral Effective Field Theory in nuclear physics. We analyze the cutoff dependence of three-nucleon observables (the neutron-deuteron scattering lengths and the triton binding energy) at the leading and next-to-leading orders of a power counting that ensures order-by-order renormalization in the two-nucleon system. Our results imply that three-body forces are not needed for renormalization of the three-nucleon system up to next-to-leading order, as usually assumed in the literature. (Erratum to the original article is included)
We discuss the results of a systematic calculation of the next-to-next-to-leading order amplitude for the pp -> pppi^0 S-wave production at the threshold in heavy-baryon chiral perturbation theory. We find six new diagrams, two of which can be viewed as vertex corrections, of 15 - 20 %, to the pion-exchange graph, whereas the rest are much larger, one exceeding 900 %. We discuss the reasons for this enhancement, as well as the steps necessary to be taken before the final comparison with experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا