Do you want to publish a course? Click here

Note on discontinuous trace approximation in the practical DPG method

106   0   0.0 ( 0 )
 Added by Norbert Heuer
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We analyze a non-conforming DPG method with discontinuous trace approximation for the Poisson problem in two and three space dimensions. We show its well-posedness and quasi-optimal convergence in the principal unknown. Numerical experiments confirming the theory have been presented previously.



rate research

Read More

We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdetermined discretization of a boundary value problem. In the same vein, the DPG$^*$ methodology is a means to solve an underdetermined discretization. These two viewpoints are developed by embedding the same operator equation into two different saddle-point problems. The analyses of the two problems have many common elements. Comparison to other methods in the literature round out the newly garnered perspective. Notably, DPG$^*$ and DPG methods can be seen as generalizations of $mathcal{L}mathcal{L}^ast$ and least-squares methods, respectively. A priori error analysis and a posteriori error control for the DPG$^*$ method are considered in detail. Reports of several numerical experiments are provided which demonstrate the essential features of the new method. A notable difference between the results from the DPG$^*$ and DPG analyses is that the convergence rates of the former are limited by the regularity of an extraneous Lagrange multiplier variable.
We propose and analyze a discretization scheme that combines the discontinuous Petrov-Galerkin and finite element methods. The underlying model problem is of general diffusion-advection-reaction type on bounded domains, with decomposition into two sub-domains. We propose a heterogeneous variational formulation that is of the ultra-weak (Petrov-Galerkin) form with broken test space in one part, and of Bubnov-Galerkin form in the other. A standard discretization with conforming approximation spaces and appropriate test spaces (optimal test functions for the ultra-weak part and standard test functions for the Bubnov-Galerkin part) gives rise to a coupled DPG-FEM scheme. We prove its well-posedness and quasi-optimal convergence. Numerical results confirm expected convergence orders.
We develop and analyze a discontinuous Petrov--Galerkin method with optimal test functions (DPG method) for a shallow shell model of Koiter type. It is based on a uniformly stable ultraweak formulation and thus converges robustly quasi-uniformly. Numerical experiments for various cases, including the Scordelis--Lo cylindrical roof, elliptic and hyperbolic geometries, illustrate its performance. The built-in DPG error estimator gives rise to adaptive mesh refinements that are capable to resolve boundary and interior layers. The membrane locking is dealt with by raising the polynomial degree only of the tangential displacement trace variable.
This paper introduces an ultra-weak space-time DPG method for the heat equation. We prove well-posedness of the variational formulation with broken test functions and verify quasi-optimality of a practical DPG scheme. Numerical experiments visualize beneficial properties of an adaptive and parabolically scaled mesh-refinement driven by the built-in error control of the DPG method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا