A simple solution of the proton spin crisis and supersymmetry crisis


Abstract in English

In this work we suggest a simple theoretical model of the proton able to effectively solve proton spin crisis. Within domain of applicability of this simple model proton consists only of two u quarks and one d quarks (two of which have spin opposite to proton and one identical to proton) and one neutral vector phi meson (with spin two times larger than proton spin and directed identically to proton spin). This model is in full agreement not only with existing DIS experiments, but also with spin and electric charge conservation as well as in a satisfactory agreement with rest mass-energy conservation (since phi meson mass is close to proton rest mass). Our model opens an interesting possibility of the solution of the quarks and leptons families problem (proton is not an absolutely non-strange particle, but only a particle with almost totally effectively hidden strange). Also we suggest a possible first step toward the solution of the supersymmetry crisis using so-called superexclusion principle. According to this principle usual particles (electron, neutrino,...) can exist actually and virtually, while their supersymmetric partners, s-particles (selectron, neutralino, ...) can exist (super)exclusively virtually but not actually.

Download