Do you want to publish a course? Click here

Ionization Correction Factors for Planetary Nebulae: I- Using optical spectra

134   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute a large grid of photoionization models that covers a wide range of physical parameters and is representative of most of the observed PNe. Using this grid, we derive new formulae for the ionization correction factors (ICFs) of He, O, N, Ne, S, Ar, Cl, and C. Analytical expressions to estimate the uncertainties arising from our ICFs are also provided. This should be useful since these uncertainties are usually not considered when estimating the error bars in element abundances. Our ICFs are valid over a variety of assumptions such as the input metallicities, the spectral energy distribution of the ionizing source, the gas distribution, or the presence of dust grains. Besides, the ICFs are adequate both for large aperture observations and for pencil-beam observations in the central zones of the nebulae. We test our ICFs on a large sample of observed PNe that extends as far as possible in ionization, central star temperature, and metallicity, by checking that the Ne/O, S/O, Ar/O, and Cl/O ratios show no trend with the degree of ionization. Our ICFs lead to significant differences in the derived abundance ratios as compared with previous determinations, especially for N/O, Ne/O, and Ar/O.



rate research

Read More

In this paper we discuss the calculation of chemical abundances in planetary nebulae and H II regions through ionization correction factors (ICFs). We review the first ICFs proposed in the literature based on ionization potential similarities and we present the most recent ICFs derived from large sample of photoionization models. We also discuss some of the considerations that have to be kept in mind when using ICFs to compute the chemical composition of ionized nebulae.
Planetary nebulae (PNe) were expected to be filled with hot pressurized gas driving their expansion. ROSAT hinted at the presence of diffuse X-ray emission from these hot bubbles and detected the first sources of hard X-ray emission from their central stars, but it was not until the advent of Chandra and XMM-Newton that we became able to study in detail their occurrence and physical properties. Here I review the progress in the X-ray observations of PNe since the first WORKshop for PLAnetary Nebulae observationS (WORKPLANS) and present the perspective for future X-ray missions with particular emphasis on eROSITA.
This chapter presents a review on the latest advances in the computation of physical conditions and chemical abundances of elements present in photoionized gas H II regions and planetary nebulae). The arrival of highly sensitive spectrographs attached to large telescopes and the development of more sophisticated and detailed atomic data calculations and ionization correction factors have helped to raise the number of ionic species studied in photoionized nebulae in the last years, as well as to reduce the uncertainties in the computed abundances. Special attention will be given to the detection of very faint lines such as heavy-element recombination lines of C, N and O in H II regions and planetary nebulae, and collisionally excited lines of neutron-capture elements (Z >30) in planetary nebulae.
It has recently been noted that there seems to be a strong correlation between planetary nebulae with close binary central stars, and highly enhanced recombination line abundances. We present new deep spectra of seven objects known to have close binary central stars, and find that the heavy element abundances derived from recombination lines exceed those from collisionally excited lines by factors of 5-95, placing several of these nebulae among the most extreme known abundance discrepancies. This study nearly doubles the number of nebulae known to have a binary central star and an extreme abundance discrepancy. A statistical analysis of all nebulae with measured recombination line abundances reveals no link between central star surface chemistry and nebular abundance discrepancy, but a clear link between binarity and the abundance discrepancy, as well as an anticorrelation between abundance discrepancies and nebular electron densities: all nebulae with a binary central star with a period of less than 1.15 days have an abundance discrepancy factor exceeding 10, and an electron density less than $sim$1000 cm$^{-3}$; those with longer period binaries have abundance discrepancy factors less than 10 and much higher electron densities. We find that [O~{sc ii}] density diagnostic lines can be strongly enhanced by recombination excitation, while [S~{sc ii}] lines are not. These findings give weight to the idea that extreme abundance discrepancies are caused by a nova-like eruption from the central star system, occurring soon after the common-envelope phase, which ejects material depleted in hydrogen, and enhanced in CNONe but not in third-row elements.
89 - Joel H. Kastner 2021
We present the results of a comprehensive, near-UV-to-near-IR Hubble Space Telescope WFC3 imaging study of the young planetary nebula (PN) NGC 6302, the archetype of the class of extreme bi-lobed, pinched-waist PNe that are rich in dust and molecular gas. The new WFC3 emission-line image suite clearly defines the dusty toroidal equatorial structure that bisects NGC 6302s polar lobes, and the fine structures (clumps, knots, and filaments) within the lobes. The most striking aspect of the new WFC3 image suite is the bright, S-shaped 1.64 micron [Fe II] emission that traces the southern interior of the east lobe rim and the northern interior of the west lobe rim, in point-symmetric fashion. We interpret this [Fe II] emitting region as a zone of shocks caused by ongoing, fast (~100 km/s), collimated, off-axis winds from NGC 6302s central star(s). The [Fe II] emission and a zone of dusty, N- and S-rich clumps near the nebular symmetry axis form wedge-shaped structures on opposite sides of the core, with boundaries marked by sharp azimuthal ionization gradients. Comparison of our new images with earlier HST/WFC3 imaging reveals that the object previously identified as NGC 6302s central star is a foreground field star. Shell-like inner lobe features may instead pinpoint the obscured central stars actual position within the nebulas dusty central torus. The juxtaposition of structures revealed in this HST/WFC3 imaging study of NGC 6302 presents a daunting challenge for models of the origin and evolution of bipolar PNe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا