No Arabic abstract
The formation of supermassive Population III stars with masses $gtrsim$ 10,000 Msun in primeval galaxies in strong UV backgrounds at $z sim$ 15 may be the most viable pathway to the formation of supermassive black holes by $z sim$ 7. Most of these stars are expected to live for short times and then directly collapse to black holes, with little or no mass loss over their lives. But we have now discovered that non-rotating primordial stars with masses close to 55,000 Msun can instead die as highly energetic thermonuclear supernovae powered by explosive helium burning, releasing up to 10$ ^{55}$ erg, or about 10,000 times the energy of a Type Ia supernova. The explosion is triggered by the general relativistic contribution of thermal photons to gravity in the core of the star, which causes the core to contract and explosively burn. The energy release completely unbinds the star, leaving no compact remnant, and about half of the mass of the star is ejected into the early cosmos in the form of heavy elements. The explosion would be visible in the near infrared at $z lesssim$ 20 to {it Euclid} and the Wide-Field Infrared Survey Telescope (WFIRST), perhaps signaling the birth of supermassive black hole seeds and the first quasars.
We present the expected observational properties of a general relativistic instability supernova (GRSN) from the 55,500 Msun primordial (Population III) star. Supermassive stars exceeding 1e4 Msun may exist in the early Universe. They are generally considered to collapse through the general relativistic instability to be seed black holes to form supermassive (~ 1e9 Msun) black holes observed as high-redshift quasars. Some of them, however, may explode as GRSNe if the explosive helium burning unbinds the supermassive stars following the collapse triggered by the general relativistic instability. We perform the radiation hydrodynamics simulation of the GRSN starting shortly before the shock breakout. We find that the GRSN is characterized by a long-lasting (550 d) luminous (1.5e44 erg/s) plateau phase with the photospheric temperature of around 5000 K in the rest frame. The plateau phase lasts for decades when it appears at high redshifts and it will likely be observed as a persistent source in the future deep near-infrared imaging surveys. Especially, the near-infrared images reaching 29 AB magnitude that can be obtained by Galaxy and Reionization EXplorer (G-REX) and James Webb Space Telescope (JWST) allow us to identify GRSNe up to z ~ 15. Deeper images enable us to discover GRSNe at even higher redshifts. Having extremely red color, they can be distinguished from other persistent sources such as high-redshift galaxies by using color information. We conclude that the deep near-infrared images are able to constrain the existence of GRSNe from the primordial supermassive stars in the Universe even without the time domain information.
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell $sim$ 20 - 100 seconds after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh--Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
Superluminous supernovae have been proposed to arise from Population III progenitors that explode as pair-instability supernovae. Pop III stars are the first generation of stars in the Universe, and are thought to form as late as $z sim 6$. Future near-infrared imaging facilities such as ULTIMATE-Subaru can potentially detect and identify these PISNe with a dedicated survey. Gravitational lensing by intervening structure in the Universe can aid in the detection of these rare objects by magnifying the high-$z$ source population into detectability. We perform a mock survey with ULTIMATE-Subaru, taking into account lensing by line-of-sight structure to evaluate its impact on the predicted detection rate. We compare a LOS mass reconstruction using observational data from the Hyper Suprime Cam survey to results from cosmological simulations to test their consistency in calculating the magnification distribution in the Universe to high-$z$, but find that the data-based method is still limited by an inability to accurately characterize structure beyond $z sim1.2$. We also evaluate a survey strategy of targeting massive galaxy clusters to take advantage of their large areas of high magnification. We find that targeting clusters can result in a gain of a factor of $sim$two in the predicted number of detected PISNe at $z > 5$, and even higher gains with increasing redshift, given our assumed survey parameters. For the highest-redshift sources at $z sim 7-9$, blank field surveys will not detect any sources, and lensing magnification by massive clusters will be necessary to observe this population.
ULTIMATE-Subaru (Ultra-wide Laser Tomographic Imager and MOS with AO for Transcendent Exploration on Subaru) and WFIRST (Wide Field Infra-Red Survey Telescope) are the next generation near-infrared instruments that have a large field-of-view. They allow us to conduct deep and wide transient surveys in near-infrared. Such a near-infrared transient survey enables us to find very distant supernovae that are redshifted to the near-infrared wavelengths. We have performed the mock transient surveys with ULTIMATE-Subaru and WFIRST to investigate their ability to discover Population III pair-instability supernovae. We found that a 5-year 1 deg2 K-band transient survey with the point-source limiting magnitude of 26.5 mag with ULTIMATE-Subaru may find about 2 Population III pair-instability supernovae beyond the redshift of 6. A 5-year 10 deg2 survey with WFIRST reaching 26.5 mag in the F184 band may find about 7 Population III pair-instability supernovae beyond the redshift of 6. We also find that the expected numbers of the Population III pair-instability supernova detections increase about a factor of 2 if the near-infrared transient surveys are performed towards clusters of galaxies. Other supernovae such as Population II pair-instability supernovae would also be detected in the same survey. This study demonstrates that the future wide-field near-infrared instruments allow us to investigate the explosions of the first generation supernovae by performing the deep and wide near-infrared transient surveys.
We perform a binary population synthesis calculation incorporating very massive population (Pop.) III stars up to 1500 $M_odot$, and investigate the nature of binary black hole (BBH) mergers. Above the pair-instability mass gap, we find that the typical primary black hole (BH) mass is 135-340 $M_odot$. The maximum primary BH mass is as massive as 686 $M_odot$. The BBHs with both of their components above the mass gap have low effective inspiral spin $sim$ 0. So far, no conclusive BBH merger beyond the mass gap has been detected, and the upper limit on the merger rate density is obtained. If the initial mass function (IMF) of Pop. III stars is simply expressed as $xi_m(m) propto m^{-alpha}$ (single power law), we find that $alpha gtrsim 2.8$ is needed in order for the merger rate density not to exceed the upper limit. In the future, the gravitational wave detectors such as Einstein telescope and Pre-DECIGO will observe BBH mergers at high redshift. We suggest that we may be able to impose a stringent limit on the Pop. III IMF by comparing the merger rate density obtained from future observations with that derived theoretically.