Local structure of Fe impurity atoms in ZnO: bulk versus surface


Abstract in English

By studying Fe-doped ZnO pellets and thin films with various x-ray spectroscopic techniques, and complementing this with density functional theory calculations, we find that Fe-doping in bulk ZnO induces isovalent (and isostructural) cation substitution (Fe2+ -> Zn2+). In contrast to this, Fe-doping near the surface produces both isovalent and heterovalent substitution (Fe3+ -> Zn2+). The calculations performed herein suggest that the most likely defect structure is the single or double substitution of Zn with Fe, although, if additional oxygen is available, then Fe substitution with interstitial oxygen is even more energetically favourable. Furthermore, it is found that ferromagnetic states are energetically unfavourable, and ferromagnetic ordering is likely to be realized only through the formation of a secondary phase (i.e. ZnFe2O4), or codoping with Cu.

Download