Do you want to publish a course? Click here

Properties of 42 Solar-type Kepler Targets from the Asteroseismic Modeling Portal

143   0   0.0 ( 0 )
 Added by Travis S. Metcalfe
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal (AMP). We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.



rate research

Read More

The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismic modeling has become more sophisticated over time, with better methods gradually developing alongside the extended observations and improved data analysis techniques. We apply the latest version of the Asteroseismic Modeling Portal (AMP) to the full-length Kepler data sets for 57 stars and the Sun, comprising planetary hosts, binaries, solar-analogs, and active stars. From an analysis of the derived stellar properties for the full sample, we identify a variation of the mixing-length parameter with atmospheric properties. We also derive a linear relation between the stellar age and a characteristic frequency separation ratio. In addition, we find that the empirical correction for surface effects suggested by Kjeldsen and coworkers is adequate for solar-type stars that are not much hotter (Teff < 6200 K) or significantly more evolved (logg > 4.2, <Delta_nu> > 80 muHz) than the Sun. Precise parallaxes from the Gaia mission and future observations from TESS and PLATO promise to improve the reliability of stellar properties derived from asteroseismology.
Stellar structure and evolution can be studied in great detail by asteroseismic methods, provided data of high precision are available. We determine the effective temperature (Teff), surface gravity (log g), metallicity, and the projected rotational velocity (v sin i) of 44 Kepler asteroseismic targets using our high-resolution (R > 20,000) spectroscopic observations; these parameters will then be used to compute asteroseismic models of these stars and to interpret the Kepler light curves.We use the method of cross correlation to measure the radial velocity (RV) of our targets, while atmospheric parameters are derived using the ROTFIT code and spectral synthesis method. We discover three double-lined spectroscopic binaries, HIP 94924, HIP 95115, and HIP 97321 - for the last system, we provide the orbital solution, and we report two suspected single-lined spectroscopic binaries, HIP94112 and HIP 96062. For all stars from our sample we derive RV, v sin i, Teff, log g, and metallicity, and for six stars, we perform a detailed abundance analysis. A spectral classification is done for 33 targets. Finally, we show that the early-type star HIP 94472 is rotating slowly (v sin i = 13 kms/1) and we confirm its classification to the Am spectral type which makes it an interesting and promising target for asteroseismic modeling. The comparison of the results reported in this paper with the information in the Kepler Input Catalog (KIC) shows an urgent need for verification and refinement of the atmospheric parameters listed in the KIC. That refinement is crucial for making a full use of the data delivered by Kepler and can be achieved only by a detailed ground-based study.
153 - H. Bruntt , S. Basu , B. Smalley 2012
We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well-represented by Fe lines. Relative abundances of light elements (CNO) and alpha-elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The log g parameter is known to better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude) and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe1-Fe2 balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, alpha elements, and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where alpha-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.
We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Mt Wilson, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observatoire de Haute Provence, and Centro Astronomico Hispano Aleman at Calar Alto. Based on data from the AAVSO International Database.)
We present results of our 5-years-long program of ground-based spectroscopic and photometric observations of individual Kepler asteroseismic targets and the open clusters NGC6866 and NGC6811 from the Kepler field of view.We determined the effective temperature, surface gravity, metallicity, the projected rotational velocity and the radial velocity of 119 Kepler asteroseismic targets for which we acquired high-resolution spectra. For many of these stars the derived atmospheric parameters agree with Teff, log g, and [Fe/H] from the Kepler Input Catalog (KIC) to within their error bars. Only for stars hotter than 7000K we notice significant differences between the effective temperature derived from spectroscopy and Teff given in the KIC. For 19 stars which we observed photoelectrically, we measured the interstellar reddening and we found it to be negligible. Finally, our discovery of the delta Sct and gamma Dor pulsating stars in the open cluster NGC6866 allowed us to discuss the frequency of the occurrence of gamma Dor stars in the open clusters of different age and metallicity and show that there are no correlations between these parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا