Do you want to publish a course? Click here

Quantum search with non--orthogonal entangled states

449   0   0.0 ( 0 )
 Added by P\\'erola Milman
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quantum resources and, in some cases, to an exponential gain in the number of runs of the protocol. In the case where the output of the search algorithm is a quantum state with some particular physical property, the searched state is found with a single query to the introduced oracle. If the obtained quantum state must be converted back to classical information, our protocol demands a number of repetitions that scales polynomially with the number of qubits required to encode a classical string.



rate research

Read More

We study quantum teleportation with the resource of non-orthogonal qubit states. We first extend the standard teleportation protocol to the case of such states. We investigate how the loss of teleportation fidelity resulting for the use of non-orthogonal states compares to a similar loss of fidelity when noisy or non-maximally entangled states as used as teleportation resource. Our analysis leads to certain interesting results on the teleportation efficiency of both pure and mixed non-orthgonal states compared to that of non-maximally entangled and mixed states.
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.
66 - Seiseki Akibue , Go Kato , 2018
The indistinguishability of non-orthogonal pure states lies at the heart of quantum information processing. Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a single measurement, we demonstrate that the distinguishability can be perfectly retrieved simply with the help of posterior classical partial information. We demonstrate this by showing an ensemble of non-orthogonal pure states such that a state randomly sampled from the ensemble can be perfectly identified by a single measurement with help of the post-processing of the measurement outcomes and additional partial information about the sampled state, i.e., the label of subensemble from which the state is sampled. When an ensemble consists of two subensembles, we show that the perfect distinguishability of the ensemble with the help of the post-processing can be restated as a matrix-decomposition problem. Furthermore, we give the analytical solution for the problem when both subensembles consist of two states.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information processing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
An important task for quantum information processing is optimal discrimination between two non-orthogonal quantum states, which until now has only been realized optically. Here, we present and compare experimental realizations of optimal quantum measurements for distinguishing between two non-orthogonal quantum states encoded in a single ^14 N nuclear spin. Implemented measurement schemes are the minimum-error measurement (known as Helstrom measurement), unambiguous state discrimination using a standard projective measurement, and optimal unambiguous state discrimination (known as IDP measurement), which utilizes a three-dimensional Hilbert space. Measurement efficiencies are found to be above 80% for all schemes and reach a value of 90% for the IDP measurement
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا