Do you want to publish a course? Click here

Spectroscopic signatures of youth in low-mass kinematic candidates of young moving groups

145   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of age-related spectral signatures observed in 25 young low-mass objects that we have previously determined as possible kinematic members of five young moving groups: the Local Association (Pleiades moving group, age=20 - 150 Myr), the Ursa Major group (Sirius supercluster, age=300 Myr), the Hyades supercluster (age=600 Myr), IC 2391 supercluster (age=35--55 Myr) and the Castor moving group (age=200 Myr). In this paper we characterize the spectral properties of observed high or low resolution spectra of our kinematic members by fitting theoretical spectral distributions. We study signatures of youth, such as lithium {sc i} 6708 AA, H$alpha$ emission and other age-sensitive spectroscopic signatures in order to confirm the kinematic memberships through age constraints. We find that 21 ($84%$) targets show spectroscopic signatures of youth in agreement with the age ranges of the moving group to which membership is implied. For two further objects, age-related constraints remain difficult to determine from our analysis. In addition, we confirm two moving group kinematic candidates as brown dwarfs.



rate research

Read More

We study a target sample of 68 low-mass objects (with spectral types in the range M4.5-L1) previously selected via photometric and astrometric criteria, as possible members of five young moving groups: the Local Association (Pleiades moving group, age=20 - 150 Myr), the Ursa Mayor group (Sirius supercluster, age=300 Myr), the Hyades supercluster (age=600 Myr), IC 2391 supercluster (age=35 - 55 Myr) and the Castor moving group (age=200 Myr). In this paper we assess their membership by using different kinematic and spectroscopic criteria. We use high resolution echelle spectroscopic observations of the sample to measure accurate radial velocities (RVs). Distances are calculated and compared to those of the moving group from the literature, we also calculate the kinematic Galactic components (U,V,W) of the candidate members and apply kinematic criterion of membership to each group. In addition we measure rotational velocities (v sin i) to place further constraints on membership of kinematic members. We find that 49 targets have young disk kinematics and that 36 of them possibly belong to one of our five moving groups. From the young disk target ob jects, 31 have rotational velocities in agreement with them belonging to the young disk population. We also find that one of our moving group candidates, 2MASS0123- 3610, is a low-mass double lined spectroscopic binary, with probable spectral types around M7.
In an effort to better understand the formation of galaxy groups, we examine the kinematics of a large sample of spectroscopically confirmed X-ray galaxy groups in the Cosmic Evolution Survey (COSMOS) with a high sampling of galaxy group members up to $z=1$. We compare our results with predictions from the cosmological hydrodynamical simulation of {sc Horizon-AGN}. Using a phase-space analysis of dynamics of groups with halo masses of $M_{mathrm{200c}}sim 10^{12.6}-10^{14.50}M_odot$, we show that the brightest group galaxies (BGG) in low mass galaxy groups ($M_{mathrm{200c}}<2 times 10^{13} M_odot$) have larger proper motions relative to the group velocity dispersion than high mass groups. The dispersion in the ratio of the BGG proper velocity to the velocity dispersion of the group, $sigma_{mathrm{BGG}}/sigma_{group}$, is on average $1.48 pm 0.13$ for low mass groups and $1.01 pm 0.09$ for high mass groups. A comparative analysis of the {sc Horizon-AGN} simulation reveals a similar increase in the spread of peculiar velocities of BGGs with decreasing group mass, though consistency in the amplitude, shape, and mode of the BGG peculiar velocity distribution is only achieved for high mass groups. The groups hosting a BGG with a large peculiar velocity are more likely to be offset from the $L_x-sigma_{v}$ relation; this is probably because the peculiar motion of the BGG is influenced by the accretion of new members.
We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence members of nearby young moving groups with Magellan Adaptive Optics (MagAO) and identify 27 binaries with instantaneous projected separation as small as 40 mas. 15 were previously unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw multiplicity rate of at least $35^{+5}_{-4}%$ for this population. In the separation range of roughly 1 - 300 AU in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least $24^{+5}_{-4}%$ for binaries resolved by the MagAO infrared camera (Clio). The M-star sub-sample of 87 stars yields a raw multiplicity of at least $30^{+5}_{-4}%$ over all separations, $21^{+5}_{-4}%$ for secondary companions resolved by Clio from 1 to 300 AU ($23^{+5}_{-4}%$ for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that multiplicity fraction as a function of mass and age over the range of 0.2 to 1.2 $M_odot$ and 10 - 200 Myr appears to be linearly flat in both parameters and across YMGs. This suggests that multiplicity rates are largely set by 100 Myr without appreciable evolution thereafter. After bias corrections are applied, the multiplicity fraction of low-mass YMG members ($< 0.6 M_odot$) is in excess of the field.
90 - A. Moor , A. Kospal , P. Abraham 2016
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$mu$m observations of 31 systems in the $beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70$mu$m PACS images, the estimated radius of these disks is ~90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient Solar System.
As part of our search for new low-mass members of nearby young moving groups (YMG), we discovered three low-mass, spectroscopic binaries, two of which are not kinematically associated with any known YMG. Using high-resolution optical spectroscopy, we measure the component and systemic radial velocities of the systems, as well as their lithium absorption and H$alpha$ emission, both spectroscopic indicators of youth. One system (2MASS J02543316-5108313, M2.0+M3.0) we confirm as a member of the 40 Myr old Tuc-Hor moving group, but whose binarity was previously undetected. The second young binary (2MASS J08355977-3042306, K5.5+M1.5) is not a kinematic match to any known YMG, but each component exhibits lithium absorption and strong and wide H$alpha$ emission indicative of active accretion, setting an upper age limit of 15 Myr. The third system (2MASS J10260210-4105537, M1.0+M3.0) has been hypothesized in the literature to be a member of the 10 Myr old TW Hya Association (TWA), but with our measured systemic velocity, shows the binary is in fact not part of any known YMG. This last system also has lithium absorption in each component, and has strong and variable H$alpha$ emission, setting an upper age limit of 15 Myr based on the lithium detection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا