We consider correlated transfer ionization in relativistic collisions between a highly charged ion and a light atom. In this process two quasi-free electrons of the atom interact with each other during the short collision time that results in capture of one of them by the ion and emission of the other. We show that this process is strongly influenced by the generalized Breit interaction already at modest relativistic impact energies.
We present kinematically complete theoretical calculations and experiments for transfer ionization in H$^++$He collisions at 630 keV/u. Experiment and theory are compared on the most detailed level of fully differential cross sections in the momentum space. This allows us to unambiguously identify contributions from the shake-off and two-step-2 mechanisms of the reaction. It is shown that the simultaneous electron transfer and ionization is highly sensitive to the quality of a trial initial-state wave function.
We present the observations of x-rays emitted from the $1s2s^{2}2p_{1/2}2p_{3/2}$ inner shell excited state of B-like W and Bi ions. The relative transition rates are obtained for two dominant radiative transitions to $1s^{2}2s^{2}2p_{1/2}$ and $1s^{2}2s^{2}2p_{3/2}$. The experimental results and the comparison with rigorous relativistic calculations show that the rates of the strong electric dipole allowed $1s^22s^22p$ -- $1s2s^22p^2$ transitions are strongly modified due to a drastic change in the wavefunction caused by the Breit interaction.
We apply the ideas of effective field theory to nonrelativistic quantum mechanics. Utilizing an artificial boundary of ignorance as a calculational tool, we develop the effective theory using boundary conditions to encode short-ranged effects that are deliberately not modeled; thus, the boundary conditions play a role similar to the effective action in field theory. Unitarity is temporarily violated in this method, but is preserved on average. As a demonstration of this approach, we consider the Coulomb interaction and find that this effective quantum mechanics can predict the bound state energies to very high accuracy with a small number of fitting parameters. It is also shown to be equivalent to the theory of quantum defects, but derived here using an effective framework. The method respects electromagnetic gauge invariance and also can describe decays due to short-ranged interactions, such as those found in positronium. Effective quantum mechanics appears applicable for systems that admit analytic long-range descriptions, but whose short-ranged effects are not reliably or efficiently modeled. Potential applications of this approach include atomic and condensed matter systems, but it may also provide a useful perspective for the study of blackholes.
We inspect the first-order electron-electron capture scenario for transfer ionization that has been recently formulated by Voitkiv et al. (Phys. Rev. A 86, 012709 (2012) and references therein). Using the multichannel scattering theory for many-body systems with Coulomb interactions, we show that this scenario is just a part of the well-studied Oppenheimer-Brinkmann-Kramers approximation. Accurate numerical calculations in this approximation for the proton-helium transfer ionization reaction exhibit no appreciable manifestation of the claimed mechanism.
Interaction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol. We show that the light-field-induced momentum transfer is remarkably sensitive to properties of the ultrashort laser pulse such as its carrier-envelope phase and ellipticity. Moreover, we show that the subcycle resolved linear momentum transfer can provide novel insights into the interplay between nonadiabatic and nondipole effects in strong-field ionization. This work paves the way towards the investigation of the so-far unexplored time-resolved nondipole nonadiabatic tunneling dynamics.