Do you want to publish a course? Click here

The elementary symmetric functions of a reciprocal polynomial sequence

305   0   0.0 ( 0 )
 Added by Shaofang Hong
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Erd{o}s and Niven proved in 1946 that for any positive integers $m$ and $d$, there are at most finitely many integers $n$ for which at least one of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ are integers. Recently, Wang and Hong refined this result by showing that if $ngeq 4$, then none of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ is an integer for any positive integers $m$ and $d$. Let $f$ be a polynomial of degree at least $2$ and of nonnegative integer coefficients. In this paper, we show that none of the elementary symmetric functions of $1/f(1), 1/f(2), ..., 1/f(n)$ is an integer except for $f(x)=x^{m}$ with $mgeq2$ being an integer and $n=1$.



rate research

Read More

Let $a$ and $b$ be positive integers. In 1946, ErdH{o}s and Niven proved that there are only finitely many positive integers $n$ for which one or more of the elementary symmetric functions of $1/b, 1/(a+b),..., 1/(an-a+b)$ are integers. In this paper, we show that for any integer $k$ with $1le kle n$, the $k$-th elementary symmetric function of $1/b, 1/(a+b),..., 1/(an-a+b)$ is not an integer except that either $b=n=k=1$ and $age 1$, or $a=b=1, n=3$ and $k=2$. This refines the ErdH{o}s-Niven theorem and answers an open problem raised by Chen and Tang in 2012.
Wooley ({em J. Number Theory}, 1996) gave an elementary proof of a Bezout like theorem allowing one to count the number of isolated integer roots of a system of polynomial equations modulo some prime power. In this article, we adapt the proof to a slightly different setting. Specifically, we consider polynomials with coefficients from a polynomial ring $mathbb{F}[t]$ for an arbitrary field $mathbb{F}$ and give an upper bound on the number of isolated roots modulo $t^s$ for an arbitrary positive integer $s$. In particular, using $s=1$, we can bound the number of isolated roots of a system of polynomials over an arbitrary field $mathbb{F}$.
Let $n$ be a positive integer and $f(x)$ be a polynomial with nonnegative integer coefficients. We prove that ${rm lcm}_{lceil n/2rceil le ile n} {f(i)}ge 2^n$ except that $f(x)=x$ and $n=1, 2, 3, 4, 6$ and that $f(x)=x^s$ with $sge 2$ being an integer and $n=1$, where $lceil n/2rceil$ denotes the smallest integer which is not less than $n/2$. This improves and extends the lower bounds obtained by Nair in 1982, Farhi in 2007 and Oon in 2013.
Quadratic matrix equations occur in a variety of applications. In this paper we introduce new permutationally invariant functions of two solvents of the n quadratic matrix equation X^2- L1X - L0 = 0, playing the role of the two elementary symmetric functions of the two roots of a quadratic scalar equation. Our results rely on the connection existing between the QME and the theory of linear second order difference equations with noncommutative coefficients. An application of our results to a simple physical problem is briefly discussed.
109 - Olga Balkanova 2019
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا