Do you want to publish a course? Click here

Efficient fault-tolerant decoding of topological color codes

101   0   0.0 ( 0 )
 Added by Ashley Stephens
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological color codes defined by the 4.8.8 semiregular lattice feature geometrically local check operators and admit transversal implementation of the entire Clifford group, making them promising candidates for fault-tolerant quantum computation. Recently, several efficient algorithms for decoding the syndrome of color codes were proposed. Here, we modify one of these algorithms to account for errors affecting the syndrome, applying it to the family of triangular 4.8.8 color codes encoding one logical qubit. For a three-dimensional bit-flip channel, we report a threshold error rate of 0.0208(1), compared with 0.0305(4) previously reported for an integer-program-based decoding algorithm. When we account for circuit details, this threshold is reduced to 0.00143(1) per gate, compared with 0.00672(1) per gate for the surface code under an identical noise model.



rate research

Read More

135 - S. Omkar , Y. S. Teo , 2019
We propose an all-linear-optical scheme to ballistically generate a cluster state for measurement-based topological fault-tolerant quantum computation using hybrid photonic qubits entangled in a continuous-discrete domain. Availability of near-deterministic Bell-state measurements on hybrid qubits is exploited for the purpose. In the presence of photon losses, we show that our scheme leads to a significant enhancement in both tolerable photon-loss rate and resource overheads. More specifically, we report a photon-loss threshold of $sim3.3times 10^{-3}$, which is higher than those of known optical schemes under a reasonable error model. Furthermore, resource overheads to achieve logical error rate of $10^{-6} (10^{-15})$ is estimated to be $sim8.5times10^{5} (1.7times10^{7})$ which is significantly less by multiple orders of magnitude compared to other reported values in the literature.
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.
We propose a scheme that converts a stabilizer code into another stabilizer code in a fault tolerant manner. The scheme first puts both codes in specific forms, and proceeds the conversion from a source code to a target code by applying Clifford gates. The Clifford gates are chosen from the comparisons between both codes. The fault tolerance of the conversion is guaranteed by quantum error correction in every step during the entire conversion process. As examples, we show three
We present a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated near-term physical parameters for electro-acoustic systems, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are intractable for classical supercomputers. Hardware with 32,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.
We optimize the area and latency of Shors factoring while simultaneously improving fault tolerance through: (1) balancing the use of ancilla generators, (2) aggressive optimization of error correction, and (3) tuning the core adder circuits. Our custom CAD flow produces detailed layouts of the physical components and utilizes simulation to analyze circuits in terms of area, latency, and success probability. We introduce a metric, called ADCR, which is the probabilistic equivalent of the classic Area-Delay product. Our error correction optimization can reduce ADCR by an order of magnitude or more. Contrary to conventional wisdom, we show that the area of an optimized quantum circuit is not dominated exclusively by error correction. Further, our adder evaluation shows that quantum carry-lookahead adders (QCLA) beat ripple-carry adders in ADCR, despite being larger and more complex. We conclude with what we believe is one of most accurate estimates of the area and latency required for 1024-bit Shors factorization: 7659 mm$^{2}$ for the smallest circuit and $6 * 10^8$ seconds for the fastest circuit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا