Do you want to publish a course? Click here

Polarizations of $chi_{c1}$ and $chi_{c2}$ in prompt production at the LHC

132   0   0.0 ( 0 )
 Added by Kuang-Ta Chao
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Prompt $chi_c$ production at hadron colliders may provide a unique test for the color-octet mechanism in nonrelativistic QCD. We present an analysis for the polarization observables of $chi_{c1}$ and $chi_{c2}$ at next-to-leading order in $alpha_S$, and propose to measure them at the LHC, which is expected to be important for testing the validity of NRQCD.



rate research

Read More

Prompt production of charmonium $chi_{c0}$, $chi_{c1}$ and $chi_{c2}$ mesons is studied using proton-proton collisions at the LHC at a centre-of-mass energy of $sqrt{s}=7$TeV. The $chi_{c}$ mesons are identified through their decay to $J/psigamma$, with $J/psitomu^+mu^-$ using photons that converted in the detector. A data sample, corresponding to an integrated luminosity of $1.0mathrm{fb}^{-1}$ collected by the LHCb detector, is used to measure the relative prompt production rate of $chi_{c1}$ and $chi_{c2}$ in the rapidity range $2.0<y<4.5$ as a function of the $J/psi$ transverse momentum from 3 to 20 GeV$/c$. First evidence for $chi_{c0}$ meson production at a high-energy hadron collider is also presented.
The decays $chi_{c1} rightarrow J/psi mu^+ mu^-$ and $chi_{c2} rightarrow J/psi mu^+ mu^-$ are observed and used to study the resonance parameters of the $chi_{c1}$ and $chi_{c2}$ mesons. The masses of these states are measured to be m(chi_{c1}) = 3510.71 pm 0.04(stat) pm 0.09(syst)MeV,, m(chi_{c2}) = 3556.10 pm 0.06(stat) pm 0.11(syst)MeV,, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(chi_{c2}) - m(chi_{c1}) = 45.39 pm 0.07(stat) pm 0.03(syst)MeV,. The natural width of the $chi_{c2}$ meson is measured to be $$Gamma(chi_{c2}) = 2.10 pm 0.20(stat) pm 0.02(syst)MeV,.$$ These results are in good agreement with and have comparable precision to the current world averages.
This Letter reports the first measurement of prompt $chi_{c1}$ and $chi_{c2}$ charmonium production in nuclear collisions at Large Hadron Collider energies. The cross-section ratio $sigma(chi_{c2}) / sigma(chi_{c1})$ is measured in $p$Pb collisions at $sqrt{s_{NN}}$ = 8.16 TeV, collected with the LHCb experiment. The $chi_{c1,2}$ states are reconstructed via their decay to a $rm{J}/psi$ meson, subsequently decaying into a pair of oppositely charged muons, and a photon, which is reconstructed in the calorimeter or via its conversion in the detector material. The cross-section ratio is consistent with unity in the two considered rapidity regions. Comparison with a corresponding cross-section ratio previously measured by the LHCb collaboration in $pp$ collisions suggests that $chi_{c1}$ and $chi_{c2}$ states are similarly affected by nuclear effects occurring in $p$Pb collisions.
The prompt production of the charmonium $chi_{c1}$ and $chi_{c2}$ mesons has been studied in proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of $sqrt{s}=7$ TeV. The $chi_c$ mesons are identified through their decays $chi_cto J/psi,gamma$ with $J/psi to mu^+ mu^-$ using 36 $mathrm{pb^{-1}}$ of data collected by the LHCb detector in 2010. The ratio of the prompt production cross-sections for the two $chi_c$ spin states, $sigma(chi_{c2})/sigma(chi_{c1})$, has been determined as a function of the $J/psi$ transverse momentum, $p_{mathrm{T}}^{J/psi}$, in the range from 2 to 15 GeV/$c$. The results are in agreement with the next-to-leading order non-relativistic QCD model at high $p_{mathrm{T}}^{J/psi}$ and lie consistently above the pure leading-order colour singlet prediction.
We report inclusive and exclusive measurements for $chi_{c1}$ and $chi_{c2}$ production in $B$ decays. We measure $mathcal{B}(B to chi_{c1} X)$= $(3.03 pm 0.05(mbox{stat}) pm 0.24(mbox{syst})) times 10^{-3}$ and $mathcal{B}(B to chi_{c2} X)$= $(0.70 pm 0.06(mbox{stat}) pm 0.10(mbox{syst})) times 10^{-3}$. For the first time, $chi_{c2}$ production in exclusive $B$ decays in the modes $B^0 to chi_{c2}pi^- K^+$ and $B^+ to chi_{c2} pi^+ pi^- K^+$ has been observed, along with first evidence for the $B^+ to chi_{c2} pi^+ K_S^0$ decay mode. For $chi_{c1}$ production, we report the first observation in the $B^+ to chi_{c1} pi^+ pi^- K^+$, $B^0 to chi_{c1} pi^+ pi^- K_S^0$ and $B^0 to chi_{c1} pi^0 pi^- K^+$ decay modes. Using these decay modes, we observe a difference in the production mechanism of $chi_{c2}$ in comparison to $chi_{c1}$ in $B$ decays. In addition, we report searches for $X(3872)$ and $chi_{c1}(2P)$ in the $B^+ to (chi_{c1} pi^+ pi^-) K^+$ decay mode. The reported results use $772 times 10^{6}$ $Boverline{B}$ events collected at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا