Do you want to publish a course? Click here

Status of indirect searches for New Physics with heavy flavour decays after the initial LHC run

141   0   0.0 ( 0 )
 Added by Gino Isidori
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We present a status report on the indirect searches for New Physics performed by means of heavy flavour decays. Particular attention is devoted to the recent experimental results in B and charm physics obtained by the LHC experiments. The implications of these results for physics beyond the Standard Model are discussed both in general terms and by means of a few specific examples.



rate research

Read More

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.
We present results of global fits of all relevant experimental data on rare $b to s$ decays. We observe significant tensions between the Standard Model predictions and the data. After critically reviewing the possible sources of theoretical uncertainties, we find that within the Standard Model, the tensions could be explained if there are unaccounted hadronic effects much larger than our estimates. Assuming hadronic uncertainties are estimated in a sufficiently conservative way, we discuss the implications of the experimental results on new physics, both model independently as well as in the context of the minimal supersymmetric standard model and models with flavour-changing $Z$ bosons. We discuss in detail the violation of lepton flavour universality as hinted by the current data and make predictions for additional lepton flavour universality tests that can be performed in the future. We find that the ratio of the forward-backward asymmetries in $B to K^* mu^+mu^-$ and $B to K^* e^+e^-$ at low dilepton invariant mass is a particularly sensitive probe of lepton flavour universality and allows to distinguish between different new physics scenarios that give the best description of the current data.
SND@LHC is an approved experiment equipped to detect scattering of neutrinos produced in the far-forward direction at the LHC, and aimed to measure their properties. In addition, the detector has a potential to search for new feebly interacting particles (FIPs) that may be produced in proton-proton collisions. In this paper, we discuss FIPs signatures at SND@LHC considering two classes of particles: stable FIPs that may be detected via their scattering, and unstable FIPs that decay inside the detector. We estimate the sensitivity of SND@LHC to probe scattering of leptophobic dark matter, and to detect decays of neutrino, scalar, and vector portal particles. Finally, we also compare and qualitatively analyze the potential of SND@LHC and FASER/FASER{ u} experiments for these searches.
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status of SUSY in global analyses after the LHC Run 1 is summarized.
We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, $m^2_{H_{u,d}}$, vary independently from the universal soft SUSY-breaking contributions $m^2_0$ to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over $4 times 10^8$ points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as their searches for supersymmetric jets + MET signals using the full LHC Run~1 data, the measurements of $B_s to mu^+ mu^-$ by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared for squarks and sleptons, $m_0^2 < 0$, as well as $m^2_{H_u} < m^2_{H_d} < 0$. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of $g_mu - 2$ and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum $chi^2 = 32.5$ with 21 degrees of freedom (dof) in the NUHM2, to be compared with $chi^2/{rm dof} = 35.0/23$ in the CMSSM, and $chi^2/{rm dof} = 32.7/22$ in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا