Analysis of Non-Coherent Joint-Transmission Cooperation in Heterogeneous Cellular Networks


Abstract in English

Base station (BS) cooperation is set to play a key role in managing interference in dense heterogeneous cellular networks (HCNs). Non-coherent joint transmission (JT) is particularly appealing due to its low complexity, smaller overhead, and ability for load balancing. However, a general analysis of this technique is difficult mostly due to the lack of tractable models. This paper addresses this gap and presents a tractable model for analyzing non-coherent JT in HCNs, while incorporating key system parameters such as user-centric BS clustering and channel-dependent cooperation activation. Assuming all BSs of each tier follow a stationary Poisson point process, the coverage probability for non-coherent JT is derived. Using the developed model, it is shown that for small cooperative clusters of small-cell BSs, non-coherent JT by small cells provides spectral efficiency gains without significantly increasing cell load. Further, when cooperation is aggressively triggered intra-cluster frequency reuse within small cells is favorable over intra-cluster coordinated scheduling.

Download