Do you want to publish a course? Click here

The Comparative Exploration of the Ice Giant Planets with Twin Spacecraft: Unveiling the History of our Solar System

145   0   0.0 ( 0 )
 Added by Diego Turrini
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the course of the selection of the scientific themes for the second and third L-class missions of the Cosmic Vision 2015-2025 program of the European Space Agency, the exploration of the ice giant planets Uranus and Neptune was defined a timely milestone, fully appropriate for an L class mission. Among the proposed scientific themes, we presented the scientific case of exploring both planets and their satellites in the framework of a single L-class mission and proposed a mission scenario that could allow to achieve this result. In this work we present an updated and more complete discussion of the scientific rationale and of the mission concept for a comparative exploration of the ice giant planets Uranus and Neptune and of their satellite systems with twin spacecraft. The first goal of comparatively studying these two similar yet extremely different systems is to shed new light on the ancient past of the Solar System and on the processes that shaped its formation and evolution. This, in turn, would reveal whether the Solar System and the very diverse extrasolar systems discovered so far all share a common origin or if different environments and mechanisms were responsible for their formation. A space mission to the ice giants would also open up the possibility to use Uranus and Neptune as templates in the study of one of the most abundant type of extrasolar planets in the galaxy. Finally, such a mission would allow a detailed study of the interplanetary and gravitational environments at a range of distances from the Sun poorly covered by direct exploration, improving the constraints on the fundamental theories of gravitation and on the behaviour of the solar wind and the interplanetary magnetic field.



rate research

Read More

The purpose of this document is to discuss the scientific case of a space mission to the ice giants Uranus and Neptune and their satellite systems and its relevance to advance our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. As a consequence, the leading theme of this proposal will be the first scientific theme of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergence of life? In pursuing its goals, the present proposal will also address the second and third scientific theme of the Cosmic Vision 2015-2025 program, i.e.: How does the Solar System work? What are the fundamental physical laws of the Universe? The mission concept we will illustrate in the following will be referred to through the acronym ODINUS, this acronym being derived from its main fields of scientific investigation: Origins, Dynamics and Interiors of Neptunian and Uranian Systems. As the name suggests, the ODINUS mission is based on the use of two twin spacecraft to perform the exploration of the ice giants and their regular and irregular satellites with the same set of instruments. This will allow to perform a comparative study of these two systems so similar and yet so different and to unveil their histories and that of the Solar System.
The 27 satellites of Uranus are enigmatic, with dark surfaces coated by material that could be rich in organics. Voyager 2 imaged the southern hemispheres of Uranus five largest classical moons Miranda, Ariel, Umbriel, Titania, and Oberon, as well as the largest ring moon Puck, but their northern hemispheres were largely unobservable at the time of the flyby and were not imaged. Additionally, no spatially resolved datasets exist for the other 21 known moons, and their surface properties are essentially unknown. Because Voyager 2 was not equipped with a near-infrared mapping spectrometer, our knowledge of the Uranian moons surface compositions, and the processes that modify them, is limited to disk-integrated datasets collected by ground- and space-based telescopes. Nevertheless, images collected by the Imaging Science System on Voyager 2 and reflectance spectra collected by telescope facilities indicate that the five classical moons are candidate ocean worlds that might currently have, or had, liquid subsurface layers beneath their icy surfaces. To determine whether these moons are ocean worlds, and investigate Uranus ring moons and irregular satellites, close-up observations and measurements made by instruments onboard a Uranus orbiter are needed.
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? Successful formation models for both the Solar System and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in super-Earths or sub-Neptunes require substantial radial inward motion of solids either as drifting mm- to cm-sized pebbles or migrating Earth-mass or larger planetary embryos. We argue that, regardless of their formation mode, the late evolution of super-Earth systems involves migration into chains of mean motion resonances, generally followed by instability when the disk dissipates. This pattern is likely also ubiquitous in giant planet systems. We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiters core must have formed fast enough to quench the growth of Earths building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiters wide orbit. The giant planets instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our Solar System system is thus the outcome of multiple unusual, but not unheard of, events.
Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.
Future remote sensing of exoplanets will be enhanced by a thorough investigation of our solar system Ice Giants (Neptune-size planets). What can the configuration of the magnetic field tell us (remotely) about the interior, and what implications does that field have for the structure of the magnetosphere; energy input into the atmosphere, and surface geophysics (for example surface weathering of satellites that might harbour sub-surface oceans). How can monitoring of auroral emission help inform future remote observations of emission from exoplanets? Our Solar System provides the only laboratory in which we can perform in-situ experiments to understand exoplanet formation, dynamos, systems and magnetospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا