Do you want to publish a course? Click here

A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability

177   0   0.0 ( 0 )
 Added by Adam J. Burgasser
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

[abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot brightness temperature model, we infer an average cloud covering fraction of ~30-55% for Luhman 16B, varying by 15-30% over a rotation period. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for three highly variable T dwarfs, and predicts relatively fast winds (1-3 km/s) for Luhman 16B consistent with lightcurve evolution on an advective time scale (1-3 rotation periods). Our observations support the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.



rate research

Read More

We present results from a two-night R~4000 0.9-2.5 micron spectroscopic monitoring campaign of Luhman 16AB (L7.5 + T0.5). We assess the variability amplitude as a function of pressure level in the atmosphere of Luhman 16B: the more variable of the two components. The amplitude decreases monotonically with decreasing pressure, indicating that the source of variability - most likely patchy clouds - lies in the lower atmosphere. An unexpected result is that the strength of the K I absorption is higher in the faint state of Luhman 16B and lower in the bright state. We conclude that either the abundance of K I increases when the clouds roll in, potentially because of additional K I in the cloud itself, or that the temperature-pressure profile changes. We reproduce the change in K I absorption strengths with combinations of spectral templates to represent the bright and the faint variability states. These are dominated by a warmer L8 or L9 component, with a smaller contribution from a cooler T1 or T2 component. The success of this approach argues that the mechanism responsible for brown dwarf variability is also behind the diverse spectral morphology across the L-to-T transition. We further suggest that the L9-T1 part of the sequence represents a narrow but random ordering of effective temperatures and cloud fractions, obscured by the monotonic progression in methane absorption strength.
The binary brown dwarf WISE J104915.57$-$531906.1 (also Luhman 16AB), composed of a late L and early T dwarf, is a prototypical L/T transition flux reversal binary located at only 2 pc distance. Luhman 16B is a known variable whose light curves evolve rapidly. We present spatially resolved spectroscopic time-series of Luhman 16A and B covering 6.5 h using HST/WFC3 at 1.1 to 1.66 $mu$m. The small, count-dependent variability of Luhman 16A at the beginning of the observations likely stems from instrumental systematics; Luhman 16A appears non-variable above $approx$0.4%. Its spectrum is well fit by a single cloud layer with intermediate cloud thickness (f_sed=2, Teff=1200 K). Luhman 16B varies at all wavelengths with peak-to-valley amplitudes of 7-11%. The amplitude and light curve shape changes over only one rotation period. The lowest relative amplitude is found in the deep water absorption band at 1.4 $mu$m, otherwise it mostly decreases gradually from the blue to the red edge of the spectrum. This is very similar to the other two known highly variable early T dwarfs. A two-component cloud model accounts for most of the variability, although small deviations are seen in the water absorption band. We fit the mean spectrum and relative amplitudes with a linear combination of two models of a warm, thinner cloud (Teff=1300 K, fsed=3) and a cooler, thicker cloud (Teff=1000-1100 K, f_sed=1), assuming out-of-equilibrium atmospheric chemistry. A cloud as for Luhman 16A but with holes cannot reproduce the variability of Luhman 16B, indicating more complex cloud evolution through the L/T transition. The projected separation of the binary has decreased by $approx$0.3 in 8 months.
Context. Photometric monitoring of the variability of brown dwarfs can provide useful information about the structure of clouds in their cold atmospheres. The brown-dwarf binary system Luhman 16AB is an interesting target for such a study, as its components stand at the L/T transition and show high levels of variability. Luhman 16AB is also the third closest system to the Solar system, allowing precise astrometric investigations with ground-based facilities. Aims. The aim of the work is to estimate the rotation period and study the astrometric motion of both components. Methods. We have monitored Luhman 16AB over a period of two years with the lucky-imaging camera mounted on the Danish 1.54m telescope at La Silla, through a special i+z long-pass filter, which allowed us to clearly resolve the two brown dwarfs into single objects. An intense monitoring of the target was also performed over 16 nights, in which we observed a peak-to-peak variability of 0.20 pm 0.02 mag and 0.34 pm 0.02 mag for Luhman 16A and 16B, respectively. Results. We used the 16-night time-series data to estimate the rotation period of the two components. We found that Luhman 16B rotates with a period of 5.1 pm 0.1 hr, in very good agreement with previous measurements. For Luhman 16A, we report that it rotates slower than its companion and, even though we were not able to get a robust determination, our data indicate a rotation period of roughly 8 hr. This implies that the rotation axes of the two components are well aligned and suggests a scenario in which the two objects underwent the same accretion process. The 2-year complete dataset was used to study the astrometric motion of Luhman 16AB. We predict a motion of the system that is not consistent with a previous estimate based on two months of monitoring, but cannot confirm or refute the presence of additional planetary-mass bodies in the system.
231 - L.A. Almeida , H. Sana , W. Taylor 2016
Massive binaries (MBs) play a crucial role in the Universe. Knowing the distributions of their orbital parameters (OPs) is important for a wide range of topics, from stellar feedback to binary evolution channels, from the distribution of supernova types to gravitational wave progenitors, yet, no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring was designed to help fill this gap by obtaining multi-epoch radial velocity monitoring of 102 MBs in the 30 Dor. In this paper, we analyse 32 VLT/FLAMES observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single- and 31 double-lined spectroscopic binaries. Overall, the OPs and binary fraction are remarkably similar across the 30 Dor region and compared to existing Galactic samples (GSs). This indicates that within these domains environmental effects are of second order in shaping the properties of MBs. A small difference is found in the distribution of orbital periods (OrbPs), which is slightly flatter (in log space) in 30 Dor than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, OrbPs in 30 Dor can be as short as 1.1 d; somewhat shorter than seen in GSs. Equal mass binaries q>0.95 in 30 Dor are all found outside NGC 2070 the very young and massive cluster at 30 Dors core. One outstanding exception however is the fact that earliest spectral types (O2-O7) tend to have shorter OrbPs than latter (O9.2-O9.7). Our results point to a relative universality of the incidence rate of MBs and their OPs in the metallicity range from solar ($Z_{odot}$) to about $0.5Z_{odot}$. This provides the first direct constraints on MB properties in massive star-forming galaxies at the Universes peak of star formation at redshifts z~1 to 2, which are estimated to have $Z~0.5Z_{odot}$.
123 - T. Morel , G. Rauw , T. Eversberg 2010
We present preliminary results of a 3-month campaign carried out in the framework of the Mons project, where time-resolved Halpha observations are used to study the wind and circumstellar properties of a number of OB stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا