Do you want to publish a course? Click here

The surprising inefficiency of dwarf satellite quenching

122   0   0.0 ( 0 )
 Added by Coral Wheeler
 Publication date 2014
  fields Physics
and research's language is English
 Authors Coral Wheeler




Ask ChatGPT about the research

We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with LCDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ~ 10^8.5-10^9.5 Msun) identified as satellites within massive host halos (Mhost ~ 10^12.5-10^14 Msun) are quenched, in spite of the expectation from simulations that half of them should have been accreted more than 6 Gyr ago. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a slow starvation scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We discuss these results in light of the fact that most of the low mass dwarf satellites in the Local Group are quenched, a seeming contradiction that could point to a characteristic mass scale for satellite quenching.



rate research

Read More

We measure the evolution of the quiescent fraction and quenching efficiency of satellites around star-forming and quiescent central galaxies with stellar mass $log(M_{mathrm{cen}}/M_{odot})>10.5$ at $0.3<z<2.5$. We combine imaging from three deep near-infrared-selected surveys (ZFOURGE/CANDELS, UDS, and UltraVISTA), which allows us to select a stellar-mass complete sample of satellites with $log(M_{mathrm{sat}}/M_{odot})>9.3$. Satellites for both star-forming and quiescent central galaxies have higher quiescent fractions compared to field galaxies matched in stellar mass at all redshifts. We also observe galactic conformity: satellites around quiescent centrals are more likely to be quenched compared to the satellites around star-forming centrals. In our sample, this conformity signal is significant at $gtrsim3sigma$ for $0.6<z<1.6$, whereas it is only weakly significant at $0.3<z<0.6$ and $1.6<z<2.5$. Therefore, conformity (and therefore satellite quenching) has been present for a significant fraction of the age of the universe. The satellite quenching efficiency increases with increasing stellar mass of the central, but does not appear to depend on the stellar mass of the satellite to the mass limit of our sample. When we compare the satellite quenching efficiency of star-forming centrals with stellar masses 0.2 dex higher than quiescent centrals (which should account for any difference in halo mass), the conformity signal decreases, but remains statistically significant at $0.6<z<0.9$. This is evidence that satellite quenching is connected to the star-formation properties of the central as well as to the mass of the halo. We discuss physical effects that may contribute to galactic conformity, and emphasize that they must allow for continued star-formation in the central galaxy even as the satellites are quenched.
The vast majority of low-mass satellite galaxies around the Milky Way and M31 appear virtually devoid of cool gas and show no signs of recent or ongoing star formation. Cosmological simulations demonstrate that such quenching is expected and is due to the harsh environmental conditions that satellites face when joining the Local Group (LG). However, recent observations of Milky Way analogues in the SAGA survey present a very different picture, showing the majority of observed satellites to be actively forming stars, calling into question the realism of current simulations and the typicality of the LG. Here we use the ARTEMIS suite of high-resolution cosmological hydrodynamical simulations to carry out a careful comparison with observations of dwarf satellites in the LG, SAGA, and the Local Volume (LV) survey. We show that differences between SAGA and the LG and LV surveys, as well as between SAGA and the ARTEMIS simulations, can be largely accounted for by differences in the host mass distributions and observational selection effects, specifically that low-mass satellites which have only recently been accreted are more likely to be star-forming, have a higher optical surface brightness, and are therefore more likely to be included in the SAGA survey. This picture is confirmed using data from the deeper LV survey, which shows pronounced quenching at low masses, in accordance with the predictions of LCDM-based simulations.
The radial spatial distribution of low-mass satellites around a Milky Way (MW)-like host is an important benchmark for simulations of small-scale structure. The distribution is sensitive to the disruption of subhalos by the central disk and can indicate whether the disruption observed in simulations of MW analogs is artificial (i.e., numeric) or physical in origin. We consider a sample of 12 well-surveyed satellite systems of MW-like hosts in the Local Volume that are complete to $M_V<-9$ and within 150 projected kpc. We investigate the radial distribution of satellites and compare with $Lambda$CDM cosmological simulations, including big-box cosmological simulations and high resolution zoom in simulations of MW sized halos. We find that the observed satellites are significantly more centrally concentrated than the simulated systems. Several of the observed hosts, including the MW, are $sim2sigma$ outliers relative to the simulated hosts in being too concentrated, while none of the observed hosts are less centrally concentrated than the simulations. This result is robust to different ways of measuring the radial concentration. We find that this discrepancy is more significant for bright, $M_V<-12$ satellites, suggestive that this is not the result of observational incompleteness. We argue that the discrepancy is possibly due to artificial disruption in the simulations, but, if so, this has important ramifications for what stellar to halo mass relation is allowed in the low-mass regime by the observed abundance of satellites.
We study the evolution of satellite galaxies in clusters of the C-EAGLE simulations, a suite of 30 high-resolution cosmological hydrodynamical zoom-in simulations based on the EAGLE code. We find that the majority of galaxies that are quenched at $z=0$ ($gtrsim$ 80$%$) reached this state in a dense environment (log$_{10}$M$_{200}$[M$_{odot}$]$geq$13.5). At low redshift, regardless of the final cluster mass, galaxies appear to reach their quenching state in low mass clusters. Moreover, galaxies quenched inside the cluster that they reside in at $z=0$ are the dominant population in low-mass clusters, while galaxies quenched in a different halo dominate in the most massive clusters. When looking at clusters at $z>0.5$, their in-situ quenched population dominates at all cluster masses. This suggests that galaxies are quenched inside the first cluster they fall into. After galaxies cross the clusters $r_{200}$ they rapidly become quenched ($lesssim$ 1Gyr). Just a small fraction of galaxies ($lesssim 15%$) is capable of retaining their gas for a longer period of time, but after 4Gyr, almost all galaxies are quenched. This phenomenon is related to ram pressure stripping and is produced when the density of the intracluster medium reaches a threshold of $rho_{rm ICM}$ $sim 3 times 10 ^{-5}$ n$_{rm H}$ (cm$^{-3}$). These results suggest that galaxies start a rapid-quenching phase shortly after their first infall inside $r_{200}$ and that, by the time they reach $r_{500}$, most of them are already quenched.
The vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas-rich and star-forming. Assuming that this dichotomy is driven by environmental quenching, we use the ELVIS suite of N-body simulations to constrain the characteristic timescale upon which satellites must quench following infall into the virial volumes of their hosts. The high satellite quenched fraction observed in the Local Group demands an extremely short quenching timescale (~ 2 Gyr) for dwarf satellites in the mass range Mstar ~ 10^6-10^8 Msun. This quenching timescale is significantly shorter than that required to explain the quenched fraction of more massive satellites (~ 8 Gyr), both in the Local Group and in more massive host halos, suggesting a dramatic change in the dominant satellite quenching mechanism at Mstar < 10^8 Msun. Combining our work with the results of complementary analyses in the literature, we conclude that the suppression of star formation in massive satellites (Mstar ~ 10^8 - 10^11 Msun) is broadly consistent with being driven by starvation, such that the satellite quenching timescale corresponds to the cold gas depletion time. Below a critical stellar mass scale of ~ 10^8 Msun, however, the required quenching times are much shorter than the expected cold gas depletion times. Instead, quenching must act on a timescale comparable to the dynamical time of the host halo. We posit that ram-pressure stripping can naturally explain this behavior, with the critical mass (of Mstar ~ 10^8 Msun) corresponding to halos with gravitational restoring forces that are too weak to overcome the drag force encountered when moving through an extended, hot circumgalactic medium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا