Synchronized Switching in a Josephson Junction Crystal


Abstract in English

We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is optically nonlinear on the single photon level with normal modes that inherit the full nonlinearity of the junctions but are nonetheless accessible via the resonator ports. For specific plasma frequencies of the junctions a set of normal modes clusters in a narrow band and eventually become entirely degenerate. Upon increasing the intensity of a red detuned drive on these modes, we observe a sharp and synchronized switching from low occupation quantum states to high occupation classical fields, accompanied by a pronounced jump from low to high output intensity.

Download