Do you want to publish a course? Click here

Low-frequency High-resolution Radio Observations of the TeV-emitting Blazar SHBLJ001355.9-185406

144   0   0.0 ( 0 )
 Added by Arti Goyal
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the framework of the unification scheme of radio-loud active galactic nuclei, BL Lac objects and quasars are the beamed end-on counterparts of low-power (FRI) and high-power (FRII) radio galaxies, respectively. Some BL Lacs have been found to possess the FRII-type large-scale radio morphology, suggesting that the parent population of BL Lacs is a mixture of low- and high-power radio galaxies. This seems to apply only to `low frequency-peaked BL Lacs, since all the `high frequency-peaked BL Lacs studied so far were shown to host exclusively the FRI-type radio jets. While analyzing the NVSS survey maps of the TeV detected BL Lacs, we have however discovered that the high frequency-peaked object SHBL J001355.9-185406 is associated uniquely with the one-sided, arcmin-scale, and edge-brightened jet/lobe-like feature extending to the south-west from the blazar core. In order to investigate in detail the large-scale morphology of SHBL J001355.9-185406, we have performed low-frequency and high-resolution observations of the source at 156, 259 and 629 MHz using the Giant Metrewave Radio Telescope. Our analysis indicates that no diffuse arcmin-scale emission is present around the unresolved blazar core, and that the arcmin-scale structure seen on the NVSS map breaks into three distinct features unrelated to the blazar, but instead associated with background AGN. The upper limits for the extended radio halo around the TeV-emitting BL Lac object SHBL J001355.9-185406 read as < 10% - 1% at $156-629$ MHz. The fact that the integrated radio spectrum of the unresolved blazar core is flat down to 156 MHz indicates that a self-similar character of the jet in the source holds up to relatively large distances from the jet base.

rate research

Read More

We present the first high-resolution 230-470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved has allowed the identification of previously-unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyze complex radio sources harbored in the cluster. Two new distinct, narrowly-collimated jets are visible in IC 310, consistent with a highly-projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behavior, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head-tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.
We report radio imaging and monitoring observations in the frequency range 0.235 - 2.7 GHz during the flaring mode of PKS 2155-304, one of the brightest BL Lac objects. The high sensitivity GMRT observations not only reveal extended kpc-scale jet and FRI type lobe morphology in this erstwhile `extended-core blazar but also delineate the morphological details, thanks to its arcsec scale resolution. The radio light curve during the end phase of the outburst measured in 2008 shows high variability (8.5%) in the jet emission in the GHz range, compared to the lower core variability (3.2%) seen at the lowest frequencies. The excess of flux density with a very steep spectral index in the MHz range supports the presence of extra diffuse emission at low frequencies. The analysis of multi wavelength (radio/ optical/ gamma-ray) light curves at different radio frequencies confirms the variability of the core region and agrees with the scenario of high energy emission in gamma-rays due to inverse Compton emission from a collimated relativistic plasma jet followed by synchrotron emission in radio. Clearly, these results give an interesting insight of the jet emission mechanisms in blazars and highlight the importance of studying such objects with low frequency radio interferometers like LOFAR and the SKA and its precursor instruments.
We present radio observations of ultraluminous infrared galaxies (ULIRGs) using the Giant Metrewave Radio Telescope (GMRT) and combine them with archival multi-frequency observations to understand whether ULIRGs are the progenitors of the powerful radio loud galaxies in the local Universe. ULIRGs are characterized by large infrared luminosities ($L_{IR}>$10$^{12}$L$odot$), large dust masses ($sim10^{8}M_{odot}$) and vigorous star formation (star formation rates $sim$10-100 $M_{odot}~$yr$^{-1}$). Studies show that they represent the end stages of mergers of gas-rich spiral galaxies. Their luminosity can be due to both starburst activity and active galactic nuclei (AGN). We study a sample of 13 ULIRGs that have optically identified AGN characteristics with 1.28~GHz GMRT observations. Our aim is to resolve any core-jet structures or nuclear extensions and hence examine whether the ULIRGs are evolving into radio loud ellipticals. Our deep, low frequency observations show marginal extension for only one source. However, the integrated radio spectra of 9 ULIRGs show characteristics that are similar to that of GPS/CSS/CSO/young radio sources. The estimated spectral ages are 0.4 to 20 Myr and indicate that they are young radio sources and possible progenitors of radio galaxies. Hence, we conclude that although most ULIRGs do not show kpc scale extended radio emission associated with nuclear activity, their radio spectral energy distributions do show signatures of young radio galaxies.
97 - A. Gemes , K.E. Gabanyi , S. Frey 2019
Active galactic nuclei are the most luminous persistent (non-transient, even if often variable) objects in the Universe. They are bright in the entire electromagnetic spectrum. Blazars are a special class where the jets point nearly to our line of sight. Because of this special geometry and the bulk relativistic motion of the plasma in the jet, their radiation is enhanced by relativistic beaming. The majority of extragalactic objects detected in gamma-rays are blazars. However, finding their counterparts in other wavebands could be challenging. Here we present the results of our 5-GHz European VLBI Network (EVN) observation of the radio source J1331+2932, a candidate blazar found while searching for possible gamma-ray emission from the stellar binary system DG CVn (Loh et al. 2017). The highest-resolution radio interferometric measurements provide the ultimate tool to confirm the blazar nature of a radio source by imaging compact radio jet structure with Doppler-boosted radio emission, and give the most accurate celestial coordinates as well.
The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterising the physical and evolutionary properties of the various source populations detected in deep radio fields (mainly star-forming galaxies and AGNs). In this paper we present new 150-MHz observations carried out with the LOw Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6$times$14.7 arcsec and reaches an rms of 160 $mu$Jy beam$^{-1}$ at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of $alpha_{150}^{1400}=-0.78pm0.015$. The median spectral index becomes slightly flatter (increasing from $alpha_{150}^{1400}=-0.84$ to $alpha_{150}^{1400}=-0.75$) with decreasing flux density down to $S_{150} sim$10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 Ultra-steep spectrum (USS) sources and 13 peaked spectrum sources. We estimate that up to 21 percent of these could have $z>4$ and are candidate high-$z$ radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا