Do you want to publish a course? Click here

A spin light emitting diode incorporating ability of electrical helicity switching

224   0   0.0 ( 0 )
 Added by Nozomi Nishizawa
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a PC-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.



rate research

Read More

62 - Marco Cecchini 2002
Planar light-emitting diodes (LEDs) fabricated within a single high-mobility quantum well are demonstrated. Our approach leads to a dramatic reduction of radiative lifetime and junction area with respect to conventional vertical LEDs, promising very high-frequency device operation. Devices were fabricated by UV lithography and wet chemical etching starting from p-type modulation-doped AlGaAs/GaAs heterostructures grown by molecular beam epitaxy. Electrical and optical measurements from room temperature down to 1.8 K show high spectral purity and high external efficiency. Time-resolved measurements yielded extremely short recombination times of the order of 50 ps, demonstrating the relevance of the present scheme for high-frequency device applications in the GHz range.
We demonstrate highly efficient spin injection at low and room temperature in an AlGaAs/GaAs semiconductor heterostructure from a CoFe/AlOx tunnel spin injector. We use a double-step oxide deposition for the fabrication of a pinhole-free AlOx tunnel barrier. The measurements of the circular polarization of the electroluminescence in the Oblique Hanle Effect geometry reveal injected spin polarizations of at least 24% at 80K and 12% at room temperature.
We demonstrate Cooper-pairs drastic enhancement effect on band-to-band radiative recombination in a semiconductor. Electron Cooper pairs injected from a superconducting electrode into an active layer by the proximity effect recombine with holes injected from a p-type electrode and dramatically accelerate the photon generation rates of a light emitting diode in the optical-fiber communication band. Cooper pairs are the condensation of electrons at a spin-singlet quantum state and this condensation leads to the observed enhancement of the electric-dipole transitions. Our results indicate the possibility to open up new interdisciplinary fields between superconductivity and optoelectronics.
We report on efficient spin injection in p-doped InGaAs/GaAs quantum-dot (QD) spin light emitting diode (spin-LED) under zero applied magnetic field. A high degree of electroluminescence circular polarization (Pc) ~19% is measured in remanence up to 100K. This result is obtained thanks to the combination of a perpendicularly magnetized CoFeB/MgO spin injector allowing efficient spin injection and an appropriate p-doped InGaAs/GaAs QD layer in the active region. By analyzing the bias and temperature dependence of the electroluminescence circular polarization, we have evidenced a two-step spin relaxation process. The first step occurs when electrons tunnel through the MgO barrier and travel across the GaAs depletion layer. The spin relaxation is dominated by the Dyakonov-Perel mechanism related to the kinetic energy of electrons, which is characterized by a bias dependent Pc. The second step occurs when electrons are captured into QDs prior to their radiative recombination with holes. The temperature dependence of Pc reflects the temperature induced modification of the QDs doping, together with the variation of the ratio between the charge carrier lifetime and the spin relaxation time inside the QDs. The understanding of these spin relaxation mechanisms is essential to improve the performance of spin LED for future spin optoelectronic applications at room temperature under zero applied magnetic field.
We investigate a semiconductor $p$-$n$ junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a certain frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence which results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. The squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This shows how macroscopic coherence of a superconductor can be used to control the properties of light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا