Do you want to publish a course? Click here

Transport through side-coupled multilevel double quantum dots in the Kondo regime

182   0   0.0 ( 0 )
 Added by Pablo S. Cornaglia
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the transport properties of a double quantum dot device in the side-coupled configuration. A small quantum dot (QD), having a single relevant electronic level, is coupled to source and drain electrodes. A larger QD, whose multilevel nature is considered, is tunnel-coupled to the small QD. A Fermi liquid analysis shows that the low temperature conductance of the device is determined by the total electronic occupation of the double QD. When the small dot is in the Kondo regime, an even number of electrons in the large dot leads to a conductance that reaches the unitary limit, while for an odd number of electrons a two stage Kondo effect is observed and the conductance is strongly suppressed. The Kondo temperature of the second stage Kondo effect is strongly affected by the multilevel structure of the large QD. For increasing level spacing, a crossover from a large Kondo temperature regime to a small Kondo temperature regime is obtained when the level spacing becomes of the order of the large Kondo temperature.



rate research

Read More

We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our calculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
We present Coulomb blockade measurements in a graphene double dot system. The coupling of the dots to the leads and between the dots can be tuned by graphene in-plane gates. The coupling is a non-monotonic function of the gate voltage. Using a purely capacitive model, we extract all relevant energy scales of the double dot system.
A system of an array of side-coupled quantum-dots attached to a quantum wire is studied theoretically. Transport through the quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the transmission probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends on the up-down asymmetry of the system. In up-down symmetry only the gap survives, and in up-down asymmetry an allowed band is formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the Dicke effect in optics.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا