Do you want to publish a course? Click here

Observational studies on the Near-Infrared Unidentified Emission Bands in Galactic HII regions

101   0   0.0 ( 0 )
 Added by Tamami Mori
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a large collection of near-infrared spectra (2.5-5.4 um) of Galactic HII regions and HII region-like objects, we perform a systematic investigation of the astronomical polycyclic aromatic hydrocarbon (PAH) features. 36 objects were observed by the use of the infrared camera onboard the AKARI satellite as a part of a directers time program. In addition to the well-known 3.3-3.6 um features, most spectra show a relatively-weak emission feature at 5.22 um with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 um band previously reported. By careful analysis, we find good correlations between the 5.25 um band and both the aromatic hydrocarbon feature at 3.3 um and the aliphatic ones at around 3.4-3.6 um. The present results give us convincing evidence that the astronomical 5.25 um band is associated with C-H vibrations as suggested by previous studies and show its potential to probe the PAH size distribution. The analysis also shows that the aliphatic to aromatic ratio of I(3.4-3.6)/I(3.3) decreases against the ratio of the 3.7 um continuum intensity to the 3.3 um band, I(3.7 cont)/I(3.3), which is an indicator of the ionization fraction of PAHs. The mid-infrared color of I(9)/I(18) also declines steeply against the ratio of the hydrogen recombination line Bralpha at 4.05 um to the 3.3 um band, I(Bralpha)/I(3.3). These facts indicate possible dust processing inside or at the boundary of ionized gas.



rate research

Read More

The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic hii regions citep{anderson2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII region infrared flux densities are strongly correlated with their ~20 cm flux densities. All HII regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions ($r<1,$pc), have slightly elevated IR to radio ratios. The colors $log_{10}(F_{24 micron}/F_{12 micron}) ge 0$ and $log_{10}(F_{70 micron}/F_{12 micron}) ge 1.2$, and $log_{10}(F_{24 micron}/F_{12 micron}) ge 0$ and $log_{10}(F_{160 micron}/F_{70 micron}) le 0.67$ reliably select HII regions, independent of size. The infrared colors of ~22$%$ of HII regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of citet{wood1989} for HII regions, after adjusting the criteria to the wavelengths used here. Since these color criteria are commonly thought to select only ultra-compact HII regions, this result indicates that the true ultra-compact HII region population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher $log_{10}(F_{70 micron}/F_{12 micron})$ ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing $R_{gal}$, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.
We present the results of near- to mid-infrared slit spectroscopic observations (2.55--13.4 um) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the Infrared Camera (IRC) on board AKARI. The target positions are selected to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6 and 11.3 um are detected toward all the targets, and ionized gas signatures: hydrogen recombination lines and ionic forbidden lines toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photo-dissociation regions, whereas Group B consists of HII regions. In Group A, the band ratios of I(3.3)/I(11.3), I(6.2)/I(11.3), I(7.7)/$I(11.3) and $I(8.6)/$I(11.3) show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 um band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I(3.3)/I(11.3) v.s. $I(7.7)/$I(11.3) as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.
The 3.3 $mu$m unidentified infrared emission feature is commonly attributed to C-H stretching band of aromatic molecules. Astronomical observations have shown that this feature is composed of two separate bands at 3.28 and 3.30 $mu$m and the origin of these two bands is unclear. In this paper, we perform vibrational analyses based on quantum mechanical calculations of 153 organic molecules, including both pure aromatic molecules and molecules with mixed aromatic/olefinic/aliphatic hydridizations. We find that many of the C-H stretching vibrational modes in polycyclic aromatic hydrocarbon (PAH) molecules are coupled. Even considering the un-coupled modes only, the correlation between the band intensity ratios and the structure of the PAH molecule is not observed and the 3.28 and 3.30 $mu$m features cannot be directly interpreted in the PAH model. Based on these results, the possible aromatic, olefinic and aliphatic origins of the 3.3 $mu$m feature are discussed. We suggest that the 3.28 $mu$m feature is assigned to aromatic C-H stretch whereas the 3.30 $mu$m feature is olefinic. From the ratio of these two features, the relative olefinic to aromatic content of the carrier can be determined.
We carried out an optical polarimetric study in the direction of the RCW95 star forming region in order to probe the sky-projected magnetic field structure by using the distribution of linear polarization segments which seem to be well aligned with the more extended cloud component. A mean polarization angle of $theta=49.8^opm7.7^o$ was derived. Through the spectral dependence analysis of polarization it was possible to obtain the total-to-selective extinction ratio ($R_V$) by fitting the Serkowski function, resulting in a mean value of $R_V=2.93pm0.47$. The foreground polarization component was estimated and is in agreement with previous studies in this direction of the Galaxy. Further, near-infrared images from Vista Variables in the Via Lactea (VVV) survey were collected to improve the study of the stellar population associated with the HII region. The Automated Stellar Cluster Analysis (ASteCA) algorithm was employed to derive structural parameters for two clusters in the region, and a set of PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones was superimposed on the decontaminated colour-magnitude diagrams (CMDs) to estimate an age of about 3 Myr for both clusters. Finally, from the near-infrared photometry study combined with spectra obtained with the Ohio State Infrared Imager and Spectrometer (OSIRIS) mounted at the Southern Astrophysics Research Telescope (SOAR) we derived the spectral classification of the main ionizing sources in the clusters associated with IRAS 15408$-$5356 and IRAS 15412$-$5359, both objects classified as O4 V stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا