No Arabic abstract
Membership identification is the first step to determine the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates with stellar masses $sim$0.11--2.4 Msun of the intermediate-age Praesepe cluster (M44), by using Pan-STARRS and 2MASS photometry, and PPMXL proper motions. Within a sky area of 3 deg radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars led to an estimate of a false positive rate 16%, suggesting 872 of the candidates being true members. This most complete and reliable membership list allows us to favor the BT-Settl model in comparison with other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20--40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.
We present a catalog of 9888 M, L and T dwarfs detected in the Pan-STARRS1 3$pi$ Survey (PS1), covering three-quarters of the sky. Our catalog contains nearly all known objects of spectral types L0-T2 in the PS1 field, with objects as early as M0 and as late as T9, and includes PS1, 2MASS, AllWISE, and Gaia DR1 photometry. We analyze the different types of photometry reported by PS1, and use two types in our catalog to maximize both depth and accuracy. Using parallaxes from the literature, we construct empirical SEDs for field ultracool dwarfs spanning 0.5-12 $mu$m. We determine typical colors of M0-T9 dwarfs, and we highlight the distinctive colors of subdwarfs and young objects. Our catalog includes 492 L dwarfs detected in $r_{rm P1}$, the largest sample of L dwarfs detected at such blue wavelengths. We combine astrometry from PS1, 2MASS, and Gaia DR1 to calculate new proper motions for our catalog. We achieve a median precision of 2.9 mas yr$^{-1}$, a factor of $approx$3-10 improvement over previous large catalogs. Our catalog contains proper motions for 2405 M6-T9 dwarfs and includes the largest set of homogeneous proper motions for L and T dwarfs published to date, 406 objects for which there were no previous measurements, and 1176 objects for which we improve upon previous literature values. We analyze the kinematics of ultracool dwarfs in our catalog and find evidence that bluer but otherwise generic late-M and L field dwarfs (i.e., not subdwarfs) tend to have higher tangential velocities compared to typical field objects. With the public release of the PS1 data, this survey will continue to be an essential tool for characterizing the ultracool dwarf population.
Over 3 billion astronomical objects have been detected in the more than 22 million orthogonal transfer CCD images obtained as part of the Pan-STARRS1 $3pi$ survey. Over 85 billion instances of those objects have been automatically detected and characterized by the Pan-STARRS Image Processing Pipeline photometry software, psphot. This fast, automatic, and reliable software was developed for the Pan-STARRS project, but is easily adaptable to images from other telescopes. We describe the analysis of the astronomical objects by psphot in general as well as for the specific case of the 3rd processing version used for the first two public releases of the Pan-STARRS $3pi$ survey data, DR1 & DR2.
We quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Veron-Cetty & Veron Catalog of Quasars. Although the majority of the sources are from the Veron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measureable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu, Ma, & Zhou (2011), and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. We average the proper motions of 158,106 extragalactic objects in bins of 3x3 degrees and present a table of proper motion corrections.
We have searched ~8200 sq. degs for high proper motion (~0.5-2.7/year) T dwarfs by combining first-epoch data from the Pan-STARRS1 (PS1) 3-Pi Survey, the 2MASS All-Sky Point Source Catalog, and the WISE Preliminary Data Release. We identified two high proper motion objects with the very red (W1-W2) colors characteristic of T dwarfs, one being the known T7.5 dwarf GJ 570D. Near-IR spectroscopy of the other object (PSO J043.5+02 = WISEP J0254+0223) reveals a spectral type of T8, leading to a photometric distance of 7.2+/-0.7 pc. The 2.56/yr proper motion of PSO J043.5+02 is the second highest among field T dwarfs, corresponding to an tangential velocity of 87+/-8 km/s. According to the Besancon galaxy model, this velocity indicates its galactic membership is probably in the thin disk, with the thick disk an unlikely possibility. Such membership is in accord with the near-IR spectrum, which points to a surface gravity (age) and metallicity typical of the field population. We combine 2MASS, SDSS, WISE, and PS1 astrometry to derive a preliminary parallax of 171+/-45 mas (5.8{+2.0}{-1.2} pc), the first such measurement using PS1 data. The proximity and brightness of PSO J043+02 will facilitate future characterization of its atmosphere, variability, multiplicity, distance, and kinematics. The modest number of candidates from our search suggests that the immediate (~10 pc) solar neighborhood does not contain a large reservoir of undiscovered T dwarfs earlier than about T8.
By exploiting two ACS/HST datasets separated by a temporal baseline of ~7 years, we have determined the relative stellar proper motions (providing membership) and the absolute proper motion of the Galactic globular cluster M71. The absolute proper motion has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources.