Do you want to publish a course? Click here

Functional Approach to Electrodynamics of Media

104   0   0.0 ( 0 )
 Added by Giulio Schober
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, we put forward a new approach to electrodynamics of materials. Based on the identification of induced electromagnetic fields as the microscopic counterparts of polarization and magnetization, we systematically employ the mutual functional dependencies of induced, external and total field quantities. This allows for a unified, relativistic description of the electromagnetic response without assuming the material to be composed of electric or magnetic dipoles. Using this approach, we derive universal (material-independent) relations between electromagnetic response functions such as the dielectric tensor, the magnetic susceptibility and the microscopic conductivity tensor. Our formulae can be reduced to well-known identities in special cases, but more generally include the effects of inhomogeneity, anisotropy, magnetoelectric coupling and relativistic retardation. If combined with the Kubo formalism, they would also lend themselves to the ab initio calculation of all linear electromagnetic response functions.



rate research

Read More

56 - G. Bertotti 1999
A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope construction applied to g(x), inspired by the overdamped dynamics of systems evolving in multistable free energy landscapes. Second, the average hysteresis response of an ensemble of such systems is expressed as a functional integral over the space G of all admissible generating functions, under the assumption that an appropriate measure m has been introduced in G. The consequences of the formulation are analyzed in detail in the case where the measure m is generated by a continuous, Markovian stochastic process. The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant (homogeneous), the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis, and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder, and the interpretation of critical state models of superconducting hysteresis.
178 - Frederic Chapoton 2008
This paper is a brief mathematical excursion which starts from quantum electrodynamics and leads to the Moebius function of the Tamari lattice of planar binary trees, within the framework of groups of tree-expanded series. First we recall Brouders expansion of the photon and the electron Greens functions on planar binary trees, before and after the renormalization. Then we recall the structure of Connes and Kreimers Hopf algebra of renormalization in the context of planar binary trees, and of their dual group of tree-expanded series. Finally we show that the Moebius function of the Tamari posets of planar binary trees gives rise to a particular series in this group.
The time-dependent density functional based tight-binding (TD-DFTB) approach is generalized to account for fractional occupations. In addition, an on-site correction leads to marked qualitative and quantitative improvements over the original method. Especially, the known failure of TD-DFTB for the description of sigma -> pi* and n -> pi* excitations is overcome. Benchmark calculations on a large set of organic molecules also indicate a better description of triplet states. The accuracy of the revised TD-DFTB method is found to be similar to first principles TD-DFT calculations at a highly reduced computational cost. As a side issue, we also discuss the generalization of the TD-DFTB method to spin-polarized systems. In contrast to an earlier study [Trani et al., JCTC 7 3304 (2011)], we obtain a formalism that is fully consistent with the use of local exchange-correlation functionals in the ground state DFTB method.
We develop a theoretical approach to ``spontaneous stochasticity in classical dynamical systems that are nearly singular and weakly perturbed by noise. This phenomenon is associated to a breakdown in uniqueness of solutions for fixed initial data and underlies many fundamental effects of turbulence (unpredictability, anomalous dissipation, enhanced mixing). Based upon analogy with statistical-mechanical critical points at zero temperature, we elaborate a renormalization group (RG) theory that determines the universal statistics obtained for sufficiently long times after the precise initial data are ``forgotten. We apply our RG method to solve exactly the ``minimal model of spontaneous stochasticity given by a 1D singular ODE. Generalizing prior results for the infinite-Reynolds limit of our model, we obtain the RG fixed points that characterize the spontaneous statistics in the near-singular, weak-noise limit, determine the exact domain of attraction of each fixed point, and derive the universal approach to the fixed points as a singular large-deviations scaling, distinct from that obtained by the standard saddle-point approximation to stochastic path-integrals in the zero-noise limit. We present also numerical simulation results that verify our analytical predictions, propose possible experimental realizations of the ``minimal model, and discuss more generally current empirical evidence for ubiquitous spontaneous stochasticity in Nature. Our RG method can be applied to more complex, realistic systems and some future applications are briefly outlined.
We construct a Lagrangian for general nonlinear electrodynamics that features electric and magnetic potentials on equal footing. In the language of this Lagrangian, discrete and continuous electric-magnetic duality symmetries can be straightforwardly imposed, leading to a simple formulation for theories with the $SO(2)$ duality invariance. When specialized to the conformally invariant case, our construction provides a manifestly duality-symmetric formulation of the recently discovered ModMax theory. We briefly comment on a natural generalization of this approach to $p$-forms in $2p+2$ dimensions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا