Interfacial microscopic mechanism of free energy minimization in Omega precipitate formation


Abstract in English

Precipitate strengthening of light metals underpins a large segment of industry.Yet, quantitative understanding of physics involved in precipitate formation is often lacking, especially, about interfacial contribution to the energetics of precipitate formation.Here, we report an intricate strain accommodation and free energy minimization mechanism in the formation of Omega precipitates (Al2Cu)in the Al_Cu_Mg_Ag alloy. We show that the affinity between Ag and Mg at the interface provides the driving force for lowering the heat of formation, while substitution between Mg, Al and Cu of different atomic radii at interfacial atomic sites alters interfacial thickness and adjust precipitate misfit strain. The results here highlight the importance of interfacial structure in precipitate formation, and the potential of combining the power of atomic resolution imaging with first-principles theory for unraveling the mystery of physics at nanoscale interfaces.

Download