Do you want to publish a course? Click here

Prospects for electron spin-dependent short-range force experiments with rare earth iron garnet test masses

164   0   0.0 ( 0 )
 Added by Joshua C. Long
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A study of the possible interactions between fermions assuming only rotational invariance has revealed 15 forms for the potential involving the fermion spins. We review the experimental constraints on unobserved macroscopic, spin-dependent interactions between electrons in the range below 1 cm. An existing experiment, using 1 kHz mechanical oscillators as test masses, has been used to constrain mass-coupled forces in this range. With suitable modifications, including spin-polarized test masses, this experiment can be used to explore all 15 possible spin-dependent interactions between electrons in this range with unprecedented sensitivity. Samples of ferrimagnetic dysprosium iron garnet have been fabricated in the suitable test mass geometry and shown to have high spin density with very low intrinsic magnetism.



rate research

Read More

Measuring the depolarization rate of a $^3$He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivity. We presented the status of the experiment at the 10th PATRAS Workshop on Axions, WIMPs and WISPs.
261 - P.-H. Chu , Y. J. Kim , S. Newman 2020
We report an experimental search for an exotic spin-spin-velocity-dependent interaction between polarized electrons of Rb atoms and polarized electrons of a solid-state mass, violating both the time-reversal and parity symmetries. This search targets a minute effective magnetic field induced by the interaction. A spin-exchange relaxation-free (SERF) magnetometer based on an optically polarized Rb vapor is the key element for both a source of polarized electrons and a high-sensitivity detector. A dysprosium iron garnet (DyIG) serves as the polarized mass, with an extremely small magnetization at the critical temperature around 240 K and a high spin density. To reduce the magnetization, one of major systematic effects, a home-built cooling system controls the mass temperature. To our knowledge, this is the first search for an exotic spin-dependent interaction using the compensated ferrimagnet DyIG as a polarized mass. The experiment set the most stringent limit on the electron-electron coupling strength in the centimeter interaction range, in particular $g_V^e g_V^e <10^{4}$ at $lambda=2$ cm.
68 - Jiro Murata , Saki Tanaka 2014
This document briefly reviews recent short-range gravity experiments that were performed at below laboratory scales to test the Newtonian inverse square law of gravity. To compare sensitivities of these measurements, estimates using the conventional Yukawa parametrization are introduced. Since these experiments were triggered by the prediction of the large extra-dimension model, experiments performed at different length scales are compared with this prediction. In this paper, a direct comparison between laboratory-scale experiments and the LHC results is presented for the first time. A laboratory experiment is shown to determine the best limit at $M_D > 4.6 ;rm{TeV}$ and $lambda<23 ;mu rm{m}$. In addition, new analysis results are described for atomic systems used as gravitational microlaboratories.
Preliminary work has been done in order to assess the perspectives of metrology and fundamental physics atomic experiments at SYRTE and LKB in the search for physics beyond the Standard Model and General Relativity. The first studies we identified are currently ongoing with the Microscope mission and with a Cs fountain clock. The latter brings significant improvement on the proton-sector coefficient $bar{c}_{TT}$ down to the $10^{-17}$ GeV level.
We investigate picosecond spin-currents across Au/iron-garnet interfaces in response to ultrafast laser heating of the electrons in the Au film. In the picoseconds after optical heating, interfacial spin currents occur due to an interfacial temperature difference between electrons in the metal and magnons in the insulator. We report measurements of this interfacial longitudinal spin Seebeck effect between Au and rare-earth iron-garnet insulators, i.e. RE$_3$ Fe$_5$O$_{12}$, where RE is Y, Eu, Tb, Tm. We use time domain thermoreflectance (TDTR) measurements to characterize the thermal response of the bilayer to ultrafast optical heating. We use time-resolved magneto-optic Kerr effect (TR-MOKE) measurements of the Au layer to measure the time-evolution of spin accumulation in the Au film. We observe a spin Seebeck effect between Au/TmIG that is three times larger than for an Au/YIG bilayer. The interfacial thermal conductance between electrons in the Au and magnons in the TmIG layer is ~ 3 $frac{MW}{m^2 K}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا