No Arabic abstract
We present a detailed first principles study on the magnetic structure of an Fe monolayer on different surfaces of 5d transition metals. We use the spin-cluster expansion technique to obtain parameters of a spin model, and predict the possible magnetic ground state of the studied systems by employing the mean field approach and in certain cases by spin dynamics calculations. We point out that the number of shells considered for the isotropic exchange interactions plays a crucial role in the determination of the magnetic ground state. In the case of Ta substrate we demonstrate that the out-of-plane relaxation of the Fe monolayer causes a transition from ferromagnetic to antiferromagnetic ground state. We examine the relative magnitude of nearest neighbour Dzyaloshinskii-Moriya (D) and isotropic (J) exchange interactions in order to get insight into the nature of magnetic pattern formations. For the Fe/Os(0001) system we calculate a very large D/J ratio, correspondingly, a spin spiral ground state. We find that, mainly through the leading isotropic exchange and Dzyaloshinskii-Moriya interactions, the inward layer relaxation substantially influences the magnetic ordering of the Fe monolayer. For the Fe/Re(0001) system characterized by large antiferromagnetic interactions we also determine the chirality of the $120^{circ}$ Neel-type ground state.
Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a $Q$-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature $T_{rm f} simeq 7$ K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below $T_{rm f}$.
We demonstrate the occurrence of compensated spin configurations in Fe clusters and monolayers on Ru(0001) and Rh(111) by a combination of X-ray magnetic circular dichroism experiments and first-principles calculations. Our results reveal complex intra-cluster exchange interactions which depend strongly on the substrate 4$d$-band filling, the cluster geometry as well as lateral and vertical structural relaxations. The importance of substrate 4$d$-band filling manifests itself also in small nearest-neighbor exchange interactions in Fe dimers and in an nearly inverted trend of the Ruderman-Kittel-Kasuya-Yosida coupling constants for Fe adatoms on the Ru and Rh surface.
Using first-principles calculations, we demonstrate that an Fe monolayer can assume very different magnetic phases on hexagonal hcp (0001) and fcc (111) surfaces of 4d- and 5d-transition metals. Due to the substrates d-band filling, the nearest-neighbor exchange coupling of Fe changes gradually from antiferromagnetic (AFM) for Fe films on Tc, Re, Ru and Os to ferromagnetic on Rh, Ir, Pd, and Pt. In combination with the topological frustration on the triangular lattice of these surfaces the AFM coupling results in a 120-degree Neel structure for Fe on Re and Ru and an unexpected double-row-wise AFM structure on Rh, which is a superposition of a left- and right-rotating 90-degree spin spiral.
Previous studies have accurately determined the effect of transition metal point defects on the properties of bcc iron. The magnetic properties of transition metal monolayers on the iron surfaces have been studied equally intensively. In this work, we investigated the magnetic properties of the 3d, 4d, and 5d transition-metal (TM) atomic monolayers in Fe/TM/Fe sandwiches using the full-potential local-orbital (FPLO) scheme of density functional theory. We prepared models of Fe/TM/Fe structures using the supercell method. We selected the total thickness of our system so that the Fe atomic layers furthest from the TM layer exhibit bulk iron-bcc properties. Along the direction perpendicular to the TM layer, we observe oscillations of spin and charge density. For Pt and W we obtained the largest values of perpendicular magnetocrystalline anisotropy and for Lu and Ir the largest values of in-plane magnetocrystalline anisotropy. All TM layers, except Co and Ni, reduce the total spin magnetic moment in the generated models, which is in good agreement with the Slater-Pauling curve. Density of states calculations showed that for Ag, Pd, Ir, and Au monolayers, a distinct van Hove singularity associated with TM/Fe interface can be observed at the Fermi level.
The spin relaxation induced by the Elliott-Yafet mechanism and the extrinsic spin Hall conductivity due to the skew-scattering are investigated in 5d transition-metal ultrathin films with self-adatom impurities as scatterers. The values of the Elliott-Yafet parameter and of the spin-flip relaxation rate reveal a correlation with each other that is in agreement with the Elliott approximation. At 10-layer thickness, the spin-flip relaxation time in 5d transition-metal films is quantitatively reported about few hundred nanoseconds at atomic percent which is one and two orders of magnitude shorter than that in Au and Cu thin films, respectively. The anisotropy effect of the Elliott-Yafet parameter and of the spin-flip relaxation rate with respect to the direction of the spin-quantization axis in relation to the crystallographic axes is also analyzed. We find that the anisotropy of the spin-flip relaxation rate is enhanced due to the Rashba surface states on the Fermi surface, reaching values as high as 97% in 10-layer Hf(0001) film or 71% in 10-layer W(110) film. Finally, the spin Hall conductivity as well as the spin Hall angle due to the skew-scattering off self-adatom impurities are calculated using the Boltzmann approach. Our calculations employ a relativistic version of the first-principles full-potential Korringa-Kohn-Rostoker Green function method.