Do you want to publish a course? Click here

Efficient allocation of heterogeneous response times in information spreading process

196   0   0.0 ( 0 )
 Added by Ming Tang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, the impacts of spatiotemporal heterogeneities of human activities on spreading dynamics have attracted extensive attention. In this paper, to study heterogeneous response times on information spreading, we focus on the susceptible-infected spreading dynamics with adjustable power-law response time distribution based on uncorrelated scale-free networks. We find that the stronger the heterogeneity of response times is, the faster the information spreading is in the early and middle stages. Following a given heterogeneity, the procedure of reducing the correlation between the response times and degrees of individuals can also accelerate the spreading dynamics in the early and middle stages. However, the dynamics in the late stage is slightly more complicated, and there is an optimal value of the full prevalence time changing with the heterogeneity of response times and the response time-degree correlation, respectively. The optimal phenomena results from the efficient allocation of heterogeneous response times.



rate research

Read More

An important problem of reconstruction of diffusion network and transmission probabilities from the data has attracted a considerable attention in the past several years. A number of recent papers introduced efficient algorithms for the estimation of spreading parameters, based on the maximization of the likelihood of observed cascades, assuming that the full information for all the nodes in the network is available. In this work, we focus on a more realistic and restricted scenario, in which only a partial information on the cascades is available: either the set of activation times for a limited number of nodes, or the states of nodes for a subset of observation times. To tackle this problem, we first introduce a framework based on the maximization of the likelihood of the incomplete diffusion trace. However, we argue that the computation of this incomplete likelihood is a computationally hard problem, and show that a fast and robust reconstruction of transmission probabilities in sparse networks can be achieved with a new algorithm based on recently introduced dynamic message-passing equations for the spreading processes. The suggested approach can be easily generalized to a large class of discrete and continuous dynamic models, as well as to the cases of dynamically-changing networks and noisy information.
Spread of information in crowd is analysed in terms of directed percolation in two-dimensional spatial network. We investigate the case when the information transmitted can be incomplete or damaged. The results indicate that for small or moderate probability of errors, it is only the critical connectivity that varies with this probability, but the shape of the transmission velocity curve remains unchanged in a wide range of the probability. The shape of the boundary between those already informed and those yet uninformed becomes complex when the connectivity of agents is small.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous mixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffic requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا