Do you want to publish a course? Click here

Shaping the dust mass - star-formation rate relation

144   0   0.0 ( 0 )
 Added by Jens Hjorth
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of SDSS galaxies, Mdust $propto$ SFR$^{1.11}$ (Da Cunha et al. 2010). Here we extend the Mdust-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) A star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the Mdust-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the Mdust-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., $sim 0.9$) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original Mdust-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.



rate research

Read More

118 - Volker Heesen 2014
We study the spatially resolved Radio Continuum-Star Formation Rate (RC-SFR) relation using state-of-the-art star-formation (SF) tracers in a sample of 17 THINGS galaxies. We use hybrid Sigma_SFR maps (GALEX FUV plus Spitzer 24 mu), RC maps at 22/18 cm from the WSRT SINGS survey, and H-alpha maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/MIR-based Sigma_SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R_int = 0.78 +/- 0.38, consistent with Condons relation. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Sigma_SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Sigma_SFR agrees with the integrated ratio with only small quasi-random fluctuations as function of radius. Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Sigma_SFR, with a typical standard deviation of a factor of two. Averaged over our sample we find (Sigma_SFR)_RC ~ (Sigma_SFR)_hyb^{0.63+/-0.25} implying that data points with high Sigma_SFR are relatively radio dim, whereas the reverse is true for low Sigma_SFR. We interpret this as a result of spectral ageing of CRe, which is supported by the radio spectral index: data points dominated by young CRe are relatively radio dim, those dominated by old CRe are relatively radio bright. The ratio of radio to FUV/MIR-based integrated SFR is independent of global galaxy parameters, suggesting that we can use RC emission as a universal SF tracer for galaxies, if we restrict ourselves to global or azimuthally averaged measurements. A magnetic field-SFR relation, B ~ SFR_hyb^{0.30+/-0.02}, holding both globally and locally, can explain our results. (abridged)
We model the star formation relation of molecular clumps in dependence of their dense-gas mass when their volume density profile is that of an isothermal sphere, i.e. $rho_{clump}(r) propto r^{-2}$. Dense gas is defined as gas whose volume density is higher than a threshold $rho_{th}=700,M_{odot}.pc^{-3}$, i.e. HCN(1-0)-mapped gas. We divide the clump into two regions: a dense inner region (where $rho_{clump}(r) geq rho_{th}$), and low-density outskirts (where $rho_{clump}(r) < rho_{th}$). We find that the total star formation rate of clumps scales linearly with the mass of their dense inner region, even when more than half of the clump star formation activity takes place in the low-density outskirts. We therefore emphasize that a linear star formation relation does not necessarily imply that star formation takes place exclusively in the gas whose mass is given by the star formation relation. The linearity of the star formation relation is strengthened when we account for the mass of dense fragments (e.g. cores, fibers) seeding star formation in the low-density outskirts, and which our adopted clump density profile $rho_{clump}(r)$ does not resolve. We also find that the star formation relation is significantly tighter when considering the dense gas than when considering all the clump gas, as observed for molecular clouds of the Galactic plane. When the clumps have no low-density outskirts (i.e. they consist of dense gas only), the star formation relation becomes superlinear and progressively wider.
We have used near-ultraviolet (NUV) to mid-infrared (MIR) composite spectral energy distributions (SEDs) to simultaneously model the attenuated stellar and dust emission of 0.5 < z < 2.0 galaxies. These composite SEDs were previously constructed from the photometric catalogs of the NEWFIRM Medium-Band Survey, by stacking the observed photometry of galaxies that have similar rest-frame NUV-to-NIR SEDs. In this work, we include a stacked MIPS 24 micron measurement for each SED type to extend the SEDs to rest-frame MIR wavelengths. Consistent with previous studies, the observed MIR emission for most SED types is higher than expected from only the attenuated stellar emission. We fit the NUV-to-MIR composite SEDs by the Flexible Stellar Population Synthesis (SPS) models, which include both stellar and dust emission. We compare the best-fit star formation rates (SFRs) to the SFRs based on simple UV+IR estimators. Interestingly, the UV and IR luminosities overestimate SFRs - compared to the model SFRs - by more than ~ 1 dex for quiescent galaxies, while for the highest star-forming galaxies in our sample the two SFRs are broadly consistent. The difference in specific SFRs also shows a gradually increasing trend with declining specific SFR, implying that quiescent galaxies have even lower specific SFRs than previously found. Contributions from evolved stellar populations to both the UV and the MIR SEDs most likely explain the discrepancy. Based on this work, we conclude that SFRs should be determined from modeling the attenuated stellar and dust emission simultaneously, instead of employing simple UV+IR-based SFR estimators.
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Telescope Wide Field Camera 3 (WFC3) grism spectroscopy in the Cosmic Assembly Near-Infrared Deep Extragalactic Survey (CANDELS) and the WFC3 Infrared Spectroscopic Parallel Survey (WISP). This sample is four times larger than previous metallicity surveys at z ~ 2, and reaches an order of magnitude lower in stellar mass (10^8 M_sun). Using stacked spectra, we find that the MZR evolves by 0.3 dex relative to z ~ 0.1. Additionally, we identify a subset of 49 galaxies with high signal-to-noise (SNR) spectra and redshifts between 1.3 < z < 1.5, where H-alpha emission is observed along with [OIII] and [OII]. With accurate measurements of SFR in these objects, we confirm the existence of a mass-metallicity-SFR (M-Z-SFR) relation at high redshifts. These galaxies show systematic differences from the local M-Z-SFR relation, which vary depending on the adopted measurement of the local relation. However, it remains difficult to ascertain whether these differences could be due to redshift evolution, as the local M-Z-SFR relation is poorly constrained at the masses and SFRs of our sample. Lastly, we reproduced our sample selection in the IllustrisTNG hydrodynamical simulation, demonstrating that our line flux limit lowers the normalization of the simulated MZR by 0.2 dex. We show that the M-Z-SFR relation in IllustrisTNG has an SFR dependence that is too steep by a factor of around three.
To compute the SFR of galaxies from the rest-frame UV it is essential to take into account the obscuration by dust. To do so, one of the most popular methods consists in combining the UV with the emission from the dust itself in the IR. Yet, different studies have derived different estimators, showing that no such hybrid estimator is truly universal. In this paper we aim at understanding and quantifying what physical processes drive the variations between different hybrid estimators. Doing so, we aim at deriving new universal UV+IR hybrid estimators to correct the UV for dust attenuation, taking into account the intrinsic physical properties of galaxies. We use the CIGALE code to model the spatially-resolved FUV to FIR SED of eight nearby star-forming galaxies drawn from the KINGFISH sample. This allows us to determine their local physical properties, and in particular their UV attenuation, average SFR, average specific SFR (sSFR), and their stellar mass. We then examine how hybrid estimators depend on said properties. We find that hybrid UV+IR estimators strongly depend on the stellar mass surface density (in particular at 70 and 100 micron) and on the sSFR (in particular at 24 micron and the TIR). Consequently, the IR scaling coefficients for UV obscuration can vary by almost an order of magnitude. This result contrasts with other groups who found relatively constant coefficients with small deviations. We exploit these variations to construct a new class of hybrid estimators based on observed UV to near-IR colours and near-IR luminosity densities per unit area. We find that they can reliably be extended to entire galaxies. The new estimators provide better estimates of attenuation-corrected UV emission than classical hybrid estimators. Naturally taking into account the variable impact of dust heated by old stellar populations, they constitute a step towards universal estimators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا